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Abstract: In this paper, we define two signed graphs namely, the order prime
signed graph OPS(Γ) and the general order prime signed graph GOPS(Γ) of a
given finite group Γ of order n. We discuss some properties of these two signed
graphs.
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1. Introduction
For standard terminology and notion in group theory and graph theory, we

refer the reader to the text-books of Herstein [3] and Harary [1] respectively. The
non-standard will be given in this paper as and when required.

Throughout this paper, Γ denotes a finite group and the group of residue classes
modulo n is denoted by Zn. The order of an element a in a group Γ is denoted by
o(a) and order of Γ is denoted by o(Γ). The greatest common divisor (gcd) of two
numbers x and y is denoted by (x, y).
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In [5], M. Sattanathan and R. Kala defined the order prime graphs of finite
groups and studied some properties of order prime graphs. In [4], we have defined
the general order prime graphs of finite groups and studied some properties.

We have concentrated on the commuting property of elements in finite non-
abelian groups to define signed graphs associated with a finite group. In this
paper, we define order prime signed graph and general order prime signed graph
of a finite group and discuss some properties of these two signed graphs. We recall
the definitions of order prime graph, general order prime graph and signed graph.

Definition 1.1. [5] The order prime graph OP (Γ) of a finite group Γ of order n
is defined as a graph with the vertex set V (OP (Γ)) = Γ and two vertices a and b
are adjacent in OP (Γ) if and only if (o(a), o(b)) = 1.

Definition 1.2. [4] The general order prime graph GOP (Γ) of a given finite group
Γ of order n is defined as a graph with vertex set V (GOP (Γ)) = Γ and any two
vertices a and b are adjacent in GOP (Γ) if and only if (o(a), o(b)) = 1 or p, where
p is a prime and p < n.

Note: We do not consider self-loops in GOP (Γ) though in some cases we have, for
some a ∈ Γ, (o(a), o(a)) = 1 or a prime p, p < n.

Definition 1.3. [2,6] A signed graph is an ordered pair S = (G, σ), where G =
(V,E) is a graph called underlying graph of S and σ : E → {+,−} is a function.

A signed graph S = (G, σ) is balanced if every cycle in S has an even number of
negative edges [2]. Equivalently, a signed graph is balanced if product of signs of
the edges on every cycle of S is positive.

2. Order prime signed graphs

Definition 2.1. The order prime signed graph OPS(Γ) of a finite group Γ is the
signed graph ((OP (Γ), σ) where the function σ : E(OP (Γ))→ {+,−} is given by

σ((a, b)) =

{
+, if ab = ba;
−, otherwise.

By the Definition 2.1, it is obvious that, if a group Γ is abelian then all the edges
of OPS(Γ) are of ‘+’ sign and in this case OPS(Γ) is a balanced signed graph. If
OPS(Γ) contains atleast one edge with ‘−’ sign, then the group Γ is non-abelian.
But the converse of this statement is not true in general. For non-abelian groups
of prime power order all the edges of OPS(Γ) will be of ‘+’ sign.

Example 2.2. Consider the group Z6 under the operation addition modulo 6. The
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corresponding order prime signed graph OPS(Z6) is shown in Fig 2.1.
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Fig. 2.1. OPS(Z6)

Example 2.3.Consider the permutation group S3 of 3 symbols. The corresponding
order prime signed graph is shown in Fig 2.2.

S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
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Fig. 2.2. OPS(S3)

Remark: Order prime signed graph of a group need not always be a triangulated
signed graph and also it need not be balanced.

The following results obtained for order prime signed graphs are anologous to
the results concerning order prime graphs [5].

Proposition 2.4. If Γ is a group of order n, then OPS(Γ) is a connected signed
graph and the maximum positive degree ∆+(OPS(Γ)) = n− 1.

Proposition 2.5. For any group Γ, the signed graph OPS(Γ) is a complete graph
with edges assigned ‘+’ sign if and only if o(Γ) = 2.
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Proposition 2.6. For any group Γ, the signed graph OPS(Γ) can never be a
unicyclic graph.

Notation: We denote a signed graph (G, σ) with all edges assigned ‘+’ sign by
G+.

Theorem 2.7. If Γ is a finite group of order n = pα where p is a prime number
and α ∈ Z+, then OPS(Γ) ∼= K+

1,n−1.

Corollary 2.8. Let Γ be a finite group of order n. Then the signed graph OPS(Γ)
is a tree with all its edges assigned ‘+’ sign if and only if n = pα, where p is a
prime number and α ∈ Z+.

Remark: If Γ is an abelian group with order o(Γ) = pα where p is a prime number
α ∈ Z+, then OPS(Γ) is a tree with all its edges assigned ‘+’ sign. But the converse
of this statement is not true, because abelian and non-abelian groups of same order
pα (α > 2) have the same order prime signed graph, that is a tree K+

1,pα−1 with all
its edges assigned ‘+’ sign, because the identity element e commutes with every
element of Γ.

Proposition 2.9. Let Γ be a finite cyclic group. Then OPS(Γ) is a signed graph
with all its edges assigned ’+’ sign and has at least two pendent vertices.

Theorem 2.10. If Γ1, Γ2 are two groups such that Γ1
∼= Γ2, then OPS(Γ1) ∼=

OPS(Γ2).

Converse of the above Theorem 2.10 is not true in general. For, consider the
groups Z4 and K4. Note that OPS(Z4) ∼= OPS(K4) ∼= K+

1,3, but Z4 and K4 are
not isomorphic.

Theorem 2.11. Let Γ be a group. Then Aut(Γ) ⊆ Aut(OPS(Γ)).

Note: The converse of the Theorem 2.11 is not true in general.

Theorem 2.12. Let Γ be a group. Suppose that the signed graph OPS(Γ) has two
adjacent vertices a, b such that o(a)o(b) = o(Γ). Then the set {a, b} is a generating
set of Γ. Moreover, if the edge (a, b) has ‘+’ sign if and only if Γ is abelian.

Theorem 2.13. Let Γ be an abelian group. Let X ⊆ Γ be such that the graph
induced by X is complete (in the sense of unsigned graph) in the signed graph
OPS(Γ) and the product of the order of all elements of X is same as of o(Γ).
Then X is a generating set of Γ.

Theorem 2.14. Let Γ be a group with o(Γ) = pn1
1 p

n2
2 · · · p

nk
k where pi’s are prime

numbers and ni ∈ Z+, (1 ≤ i ≤ k). Then the signed graph OPS(Γ) is a complete
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(k + 1)-partite graph (in the sense of unsigned graph) if and only if o(a) = pji ,
∀a ∈ Γ− {e}, 1 ≤ i ≤ k and 1 ≤ j ≤ ni.

3. General order prime signed graphs

Definition 3.1. The order prime signed graph GOPS(Γ) of a finite group Γ is the
signed graph ((GOP (Γ), σ) where the function σ : E(GOP (Γ)) → {+,−} is given
by

σ((a, b)) =

{
+, if ab = ba;
−, otherwise.

By the Definition 3.1, it is obvious that, if a group Γ is abelian then all the
edges of GOPS(Γ) are of ‘+’ sign and so in this case GOPS(Γ) is a balanced signed
graph. If GOPS(Γ) contains atleast one edge with ‘−’ sign, then the group Γ is
non-abelian.

By the Definitions 2.1 and 3.1, it follows that for any finite group Γ, OPS(Γ) is
a subgraph of GOPS(Γ). Since the identity element e is the only element of order
1 in any group Γ of order n, it follows that, the graph OPS(Γ) and GOPS(Γ) are
connected. Also, d+(e) = n−1 and the maximum positive degree ∆+(GOPS(Γ)) =
∆+(OPS(Γ)) = n− 1.

Proposition 3.2. If Γ is a group of prime order then GOPS(Γ) = OPS(Γ).

Proof. Suppose that o(Γ) is a prime number p. Then Γ is an abelian group and
so all edges in GOPS(Γ) and OPS(Γ) are assigned ‘+’ sign. Since the positive
divisors of a prime p are 1 and p itself, and by the definitions of GOPS(Γ) and
OPS(Γ), it follows that, GOPS(Γ) = OPS(Γ).

Theorem 3.3. If Γ is a finite cyclic group and OPS(Γ) = GOPS(Γ), then o(Γ)
is a prime number.

Proof. Suppose Γ is a finite cyclic group and OPS(Γ) = GOPS(Γ). We claim
that o(Γ) is a prime number. If o(Γ) = n is not a prime, then there exists a prime
number p (p < n) dividing o(Γ) = n and by the Cauchys theorem for finite groups,
Γ has an element a of order p. Since Γ is cyclic, there exists an element b in Γ
with o(b) = n. Now (o(a), o(b)) = (p, n) = p. Therefore a and b are adjacent in
GOPS(Γ). But GOPS(Γ) = OPS(Γ) and so p must be equal to 1, which is a
contradiction. Hence n is a prime number.

By virtue of the Proposition 3.2 and the Theorem 3.3, we have the following
corollary:

Corollary 3.4. An integer n > 1 is a prime number if and only if OPS(Zn) =
GOPS(Zn).
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Theorem 3.5. Let Γ be a finite group of order n. Then GOPS(Γ) ∼= K+
1,n−1 if

and only if o(Γ) = n is a prime number.

Proof. Suppose that o(Γ) = p is a prime number. Then Γ is a cyclic group. Being
a cyclic group, Γ is abelian and so all the edges in GOPS(Γ) are assigned ‘+’ sign.
Let Γ = {e, a, a2, . . . , ap−1}, where e is the identity element and a is a generator of
the group Γ. Note that in the group Γ, o(e) = 1 and o(ai) = p, 1 ≤ i ≤ p−1. Hence
(o(e), o(ai)) = 1 and (o(ai), o(aj)) = p, 1 ≤ i, j ≤ p − 1. Therefore e is adjacent
to ai for all i = 1, 2, . . . , p− 1 and ais are mutually non-adjacent in GOPS(Γ) and
hence GOPS(Γ) ∼= K+

1,p−1.
Conversely, suppose that GOPS(Γ) ∼= K+

1,n−1. Clearly, GOP (Γ) − e is totally
disconnected. We claim that o(Γ) = n is a prime number. If n is not a prime
number, then there exists a prime p dividing n. Since p | n, by the Cauchy’s
theorem for finite groups, there exists an element a in Γ such that o(a) = p. Now,
for any element x 6= e in Γ, (o(a), o(x)) = 1 or p. Hence a and x are adjacent in
GOP (Γ)− e, which is a contradiction and so n is a prime number.

The following corollaries are immediate from the Theorem 3.5.

Corollary 3.6. Let Γ be a finite group of order n. Then GOPS(Γ) is a tree (in
which all edges are assigned ‘+’ sign) if and only if o(Γ) is a prime number.

Corollary 3.7. An integer n > 1 is prime if and only if GOPS(Zn) is a tree (in
which all edges are assigned ‘+’ sign).
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