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Abstract: This paper deals with an approximation space and a hypergroup the-
ory. Also we introduce invertible subhypergroup nano topology. Moreover, the
notion of a normal and closed subhypergroup gives the characterization of invert-
ible subhypergroup nano topology. Finally, we have shown that copper has same
crystalline form but different chemical composition using nano homeomorphic in
invertible subhypergroup nano topology.
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1. Introduction
Pawlak introduced “rough set theory”[11], a mathematical tool for dealing with

vagueness or uncertainity. Since 1982, the theory and applications of rough sets
have impressively developed. The algebraic approach to rough sets was studied
by some authors, for instance by Bonikowaski[1], Iwinski[6]. Kuroki[7] considered
the rough ideal in a semigroup, Kuroki and Wang[8] studied the lower and up-
per approximations with respect to normal subgroups, Davvaz[5] introduced rough
subrings and rough ideals, with respect to an ideal of a ring.
On the other hand, algebraic hyperstructures, particularly hypergroups, were in-
troduced by Marty[10] in 1934. Since then, algebraic hyperstructures have been
intensively studied, both from the theoretical point of view and especially for their
applications in other fields such as nonEuclidean geometries, graphs and hyper-
graphs, fuzzy sets, automata, cryptography, artificial intelligence, codes, proba-
bilities,lattices and so on. An interesting book dedicated to the applications of
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hyperstructures is [3], written by Corsini-Leoreanu. Nano topology is studied by
Lellis Thivagar and Carmel Richard[9].
In this paper, we present a general framework for the study of approximations in
invertible subhypergroups nano topology. We also consider rough approximations
of a closed and normal subhypergroup to get nano topology. Finally, we apply the
above approach, by introducing redox reaction and analying indiscrete nanotopol-
ogy.

2. Preliminaries
Now we would like to present some basic notations and results about hyper-

groups which will be necessary in the following paragraphs.

Definition 2.1. [2]: Let H be a nonempty set. A hyperoperation on H is a map ◦
: H × H −→ P ∗(H), where P ∗(H) is the set of all nonempty subsets of H. For
any nonnempty subsets A,B of H we denote by AB = ∪a∈A,b∈Bab. The couple (H,
◦) is called a hypergroupoid.

Definition 2.2. [2]: (H, ◦) is said to be hypergroup if for all x,y,z of H, we have
(xy)z = x(yz) and Hx = xH = H. Let K ⊂ H, K 6= ∅.
Definition 2.3. [2]: (K, ◦) is said to be subhypergroup of (H, ◦) if for any a ∈
K, we have Ka = aK = K. A subhypergroup K of H is

(i) closed if for all a,b of K and x,y of H such that a ∈ bx and a ∈ yb, it follows
that x,y belong to K.

(ii) left invertible if for all x,y of H such that x ∈ Ky,it follows that y ∈ Kx. We
say that K is invertible if it is left and right invertible.

(iii) normal if for any x ∈ H, we have xK = Kx.

Proposition 2.4. [2]: (i) K is right invertible in H if and only if the following
implication is valid: b ∈ Ka =⇒ a ∈ Kb for all a,b ∈ H.
(ii) K is left invertible in H if and only if the following implication is valid: b ∈
aK =⇒ a ∈ bK for all a,b ∈ H.

Proposition 2.5. [2]: (i) K is right invertible in H if and only if the following
implication is valid : Ka 6= Kb =⇒ Ka ∩ Kb = ∅ for all a,b ∈ H.
(ii) K is left invertible in H if and only if the following implication is valid: aK 6=
bK =⇒ aK ∩ bK = ∅ for all a,b ∈ H.

Definition 2.6. [2]: A nonempty subset A of H is called a complete part of H if
for any n ∈ N∗ and any x1, x2, ....xn of H such that A ∩ Πn

i=1xi 6= ∅, it follows
that Πn

i=1xi ⊆ A.
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Definition 2.7. [2]: If A is a nonempty subset of H, then the complete closure
C(A) of A is the intersection of all complete parts of H, which contains A.

Remark 2.8. [2]: If K is an invertible subhypergroup of H, then the following
relation: x RKy if and only if x ∈ yK is an equivalence relation. The symmetry
and transitivity are immediate. Moreover, for any x ∈ H and k∈ K, there exist y ∈
H, such that x ∈ yk ⊂ yK. Since y ∈ xK, we obtain x ∈ xK, that is if the reflexivity
holds too. Hence, if K is an invertible subhypergroup, then {xK}x∈H is a partition
of H such that for any x ∈ H, we have x ∈ xK.

Definition 2.9. [9]: Let U be a nonempty finite set of objects called the universe
and R be an equivalence relation on U named as the indiscernibility relation. Ele-
ments belonging to the same equivalence class are said to be indiscernible with one
another. The pair (U ,R) is said to be the approximation space. Let X ⊆ U .

(i) The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is,
LR(X) =

⋃
x∈U{x : R(x) ⊆ X},where R(x) denotes the equivalence class

determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects,
which can be possibly classified as X with respect to R and it is denoted by
UR(X) =

⋃
x∈U{x : R(x) ∩X 6= ∅}.

(iii) The boundary region of X with respect to R is the set of all objects,which can
be classified neither as X nor as X with respect to R and it is denoted by
BR(X).That is, BR(X) = UR(X)- LR(X).

Definition 2.10. [9]: Let U be an universe, R be an equivalence relation on U and
τR(X) = {U ,∅, LR(X), UR(X), BR(X)} where X ⊆ U . τR(X) satisfies the following
axioms:

(i) U and ∅ ∈ τR(X).

(ii) The union of the elements of any subcollection of τR(X) is in τR(X).

(iii) The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

That is, τR(X) forms a topology on U called the nano topology on U with respect
to X.We call (U ,τR(X)) as the nano topological space.The elements of τR(X) are
called nano-open sets.
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Proposition 2.11. [9]: Let U be a nonempty finite universe and X ⊂ U , U/R be
an indiscernibility relation on U then

(i) Nano Type-1(NT1): If LR(X) = UR(X) = X, then the nano topology,
τR(X) = {U , ∅, LR(X)}.

(ii) Nano Type-2(NT2): If LR(X) = ∅ and UR(X) 6= U , then τR(X) =
{U , ∅, UR(X)}.

(iii) Nano Type-3(NT3): If LR(X) 6= ∅ and UR(X) = U , then
τR(X) = {U , ∅, LR(X), BR(X)}.

(iv) Nano Type-4(NT4): If LR(X) = ∅ and UR(X) = U , then τR(X) = {U , ∅},
is the indiscrete nano topology on U.

(v) Nano Type-5(NT5): If LR(X) 6= UR(X) where LR(X) 6= ∅ and UR(X)
6= U , then τR(X) = {U , ∅, LR(X), UR(X), BR(X)}.

3. Invertible subhypergroup Nano Topology
In this section we introduce the invertible subhypergroup nano topology and

also the characterizations are given.

Definition 3.1. : Let (H, ◦) be a hypergroup, S be an invertible subhypergroup
of H. For all x ∈ H, xS induces an equivalence relation on H and A ⊆ H, where
LS(A), US(A), BS(A) are follows.

(i) The lower approximation of A with respect to S is the set of all objects, which
can be for certain classified as A with respect to S and it is denoted by LS(A).
That is, LS(A) = {x ∈ H|xS ⊆ A}.

(ii) The upper approximation of A with respect to S,is the set of all objects, which
can be possibly classified as A with respect to S and it is denoted by LS(A).
That is, US(A) = {x ∈ H|xS ∩ A 6= ∅}.

(iii) The boundary region of A with respect to S, is the set of all objects, which
can be classified as A with respect to S and it is denoted by BS(A). That is,
BS(A) = US(A)− LS(A).

Definition 3.2. : Let H be a hypergroup, S is an invertible subhypergroup on
H and τS(A) = {H, ∅, LS(A), US(A), BS(A)} where A ⊆ H, τS(A) satisfies the
following axioms:

(i) H and ∅ ∈ τS(A).
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(ii) The union of the elements of any subcollection of τS(A) is in τS(A).

(iii) The intersection of the elements of any finite subcollection of τS(A) is in
τS(A).

That is τS(A) forms a invertible subhypergroup nanotopology on H with respect to
A. We call (H,τS(A)) as the invertible subhypergroup nano topological space. The
elements are called invertible subhypergroup nano open sets.

Remark 3.3. : We have LS(X) = LRS
(X) and US(X) = URS

(X) and BS(X)
= BRS

(X). Indeed for any x ∈ H, the equivalence class of x with respect to RS is
xS, where RS is the equivalence relation with respect to invertible subhypergroup.

Example 3.4. : Let H ={e,a,b,c}. We consider the following hyperoperation on
H

◦ e a b c
e e {a, b} {a, b} {c}
a {a, b} {c} {c} {e}
b {a, b} {c} {c} {e}
c {c} {e} {e} {a, b}

Then (H,◦) is a hypergroup. S = {e} be an invertible subhypergroup and A =
{a,b}. Now LS(A) ={a,b} and US(A) ={a,b}, BS(A) = ∅. Then τS(A) =
{H, ∅, {a, b}}.
Theorem 3.5. : The following theorem hold for a hypergroup nano topological
space.

(i) LS(A) ⊆ A ⊆ US(A).

(ii) LS(A) = ∅ = US(A).

(iii) LS(A) = H = US(A).

(iv) if A ⊆ B, then LS(A) ⊆ LS(B) and US(A) ⊆ US(B).

(v) LS(LS(A)) = LS(A).

(vi) US(US(A)) = US(A).

(vii) US(LS(A)) = LS(A).

(viii) LS(US(A)) = US(A).
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(ix) LS(A) = (US(Ac))c where Bc = H-B for any B ⊆ H.

(x) US(A) = (LS(Ac))c.

(xi) US(A ∩B) ⊆ US(A) ∩ US(B).

(xii) LS(A ∩B) = LS(A) ∩ LS(B).

(xiii) LS(xS) = US(xS), for all x ∈ H.

Proof.

(i) If x ∈ LS(A) that is x ∈ xS ⊆ A this implies x ∈ A and hence x ∈ US(A).

(ii) and (iii) obvious.

(iv) If A ⊆ B and x ∈ LS(A) then x ∈ US(A), so u ∈ LS(A). We have uS = xS
and uS ⊆ A, so x ∈ LS(A) and so x ∈ LS(B). Therefore, LS(A) ⊆ LS(B)
and similarly US(A) ⊆ US(B).

(v) If x ∈ LS(LS(A)) then there exists u ∈ xS and u ∈ LS(A). We have uS =
xS and uS ⊆ A so x ∈ LS(A). Conversely, if x ∈ LS(A) then we show that
there exist u ∈ xS ⊆ LS(A). Take u = x.

(vi) If x ∈ US(US(A)) then there exists u ∈ xS and u ∈ US(A). We have uS =
xS and uS ∩ A 6= ∅, so x ∈ US(A). Conversely, if x ∈ US(A) then we show
that there exists u ∈ xS ∩ US(A). Take u = x.

(vii) and (viii) proof is similar.

(ix) Replace Ac = A then US(A)c we know that US(A)c = LS(Ac). Now LS(A)
= US(A)c. Hence LS(A) = (US(Ac))c.

(x) proof is similar.

(xi) Let x ∈ US(A ∪ B). Then x ∈ xS ∩ (A ∪ B). It follows that x ∈ xS ∩ A
and x ∈ xS ∩ B and hence x ∈ US(A) or x ∈ US(B) that is x ∈ US(A) ∪
US(B).

(xii) obvious.

(xiii) If x ∈ LS(xS) since xS = xS and similarly it cannot be empty then LS(xS)
= US(xS).
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Theorem 3.6. : If H is a hypergroup, A is a complete part of H and S is an
invertible subhypergroup of H, then invertible subhypergroup nano topology is τS(A)
= {H, ∅, LS(A)}.
Proof. : Indeed,if x ∈ US(A), then xS ∩ A 6= ∅ and by hypothesis, it follows
that xS ⊆ A, hence x∈ A. On the other hand,if a ∈ A then a ∈ aS ∩ A,hence we
obtain aS ⊆ A. Hence a ∈ LS(A). Therefore, we obtain the nano topology τS(A)
= {H, ∅, LS(A)}.
Theorem 3.7. : Let (H,◦) be a hypergroup, A be a complete part of H and S is an
invertible subhypergroup of H, then the nano topology is τS(A) = {H, ∅, LS(A)}.
Proof. : We already have LS(A) ⊆ A ⊆ US(A). Let x ∈ US(A) that is a ∈ xS
∩ A. We obtain xS = aS such that x, hence x ∈ C(a) ⊆ C(A) = A. On the other
hand, if a ∈ A, then aSA = C(a) ⊆ A. Hence a ∈ LS(A). Therefore the invertible
subhypergroup nano topology is τS(A) = {H, ∅, LS(A)}.
Theorem 3.8. : Let (H,◦) be a hypergroup, S be an invertible subhypergroup of H,
S∗ be a closed subhypergroup of H and LS(S∗) 6= ∅ if and only if S ⊆ S∗. Then
τS(S∗) = {H, ∅, LS(S∗), BS(S∗)}
Proof. : (i) If S∗ ⊆ S, S∗ 6= S, then LS(S∗). We have x ∈ xS ⊆ S∗ . Let s ∈ S
and u ∈ xS ⊆ S∗. Since S∗ is closed, it follows that s ∈ S∗. Hence S ⊆ S∗ and
since S∗ ⊆ S, we obtain S = S∗, which is a contradiction. Hence we get LS(S∗)
= S∗ which is of the type τS(S∗) = {U , ∅, LS(S∗), BS(S∗)}.
(ii) If S ⊆ S∗, then for any x ∈ S∗, we have xS ⊆ S∗, so S∗ ⊆ LS(S∗). Moreover,
we have LS(S∗) ⊆ S∗ and hence LS(S∗) = S∗.
(iii) If S * S∗ and S∗ * S, then LS(S∗) ⊆ S∗ and we consider the following
cases:
(a) If x ∈ S then xS = S * S∗,hence x /∈ LS(S∗).
(b) If x ∈ S∗ -S and if we suppose xS ⊆ S∗, then we consider y ∈ S - S∗ and we
have xy ⊆ S∗. Since x ∈ S∗ and S∗ is closed, it follows that y ∈ S∗, which is a
contradiction.
Hence, xS * S∗, which means that x /∈ LS(S∗). We obtain LS(S∗) = ∅.
Therefore, LS(S∗) 6= ∅ if and only if S ⊆ S∗ and in this case we have LS(S∗)
= S∗. Here we get the invertible subhypergroup nano topology as τS(S∗) =
{H, ∅, LS(S∗), BS(S∗)}.
Theorem 3.9. : Let (H,◦) be a hypergroup, S1 be a invertible subhypergroup of
H, S2 be a normal subhypergroup of H and LS1(S2) = US1(S2), then invertible
subhypergroup nano topology is {H,∅, LS1(S2)}.
Proof. : If S1 is invertible subhypergroup and for x,y ∈ H we get x ∈ S1y =⇒ y
∈ S1x and S2 is normal subhypergroup. Therefore xS2 = S2x. Assume xS1 ∈
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LS1(S2) = {x ∈ H/xS1 ⊂ S2} if and only if x ∈ H and xS1 ⊂ S2 if and only if x ∈
H and xS1 ∩ S2 6= ∅ if and only if xS1 ∈ US1(S2).Hence LS1(S2) = US1(S2).So
the invertible subhypergroup nano topology is {H,∅, LS1(S2)}.
4. Application

In this section we get invertible subhypergroup Nano topology through Redox
reaction in terms of spontaneous reaction.

Definition 4.1. [13] : Reduction is defined as the gain of electrons or a decrease
in oxidation state by a molecule, atom, or ion.

Definition 4.2. [13] : Oxidation is defined as the loss of electrons or an increase
in oxidation state by a molecule, atom, or ion.

Definition 4.3. [13] : Redox is defined as a contraction of the name for chemical
reduction-oxidation reaction. A reduction reaction always occurs with an oxidation
reaction.Redox reactions include all chemical reactions in which atoms have their
oxidation state changed.

Example 4.4. [13] : Simple redox process, such as the carbon to yield carbondiox-
ide or the reduction of carbon by hydrogen to yield methane or a complex process
such as the oxidation of glucose in the human body through a series of complex
electron transfer processes.

Definition 4.5. [13] : The oxidation alone and the reduction alone are each called
a half-reaction, because two half- reactions always occur together to form a whole
reaction.

Definition 4.6. [13] : Each half reaction has a standard reduction potential ( E0),
which is equal to the potential difference at equilibrium under standard conditions
of an electrochemical cell in which the cathode reaction is the half-reaction consid-
ered, and the anode is a Standard Hydrogen Electrode(SHE). For a redox reaction,
the potential of the cell is defined by: E0

cell = E0
cathode - E0

anode. If the potential of
a redox reaction ( E0

cell) is positive, this reaction will spontaneous.

Definition 4.7. : Homeomorphism is said to be similarity in crystalline form but
not necessarily in chemical composition.

Copper(Cu) is a ductile metal with very high thermal and electrical conduc-
tivity. It is used as a conductor of heat and electricity, a building material,
and a constituent of various metal alloys. Cu can be in four oxidation state:
Cu(0),Cu(I),Cu(II),Cu(III). In nature, copper mainly is as CuFeS2, with oxi-
dation state of II for Cu. Also, Cu can be as Cu2S or Cu2O with the oxidation
state of I. Pure copper is obtained by electrolytic refining using sheets of pure
copper as cathode and impure copper as anode. In this process different ions of
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Cu, Cu(II) or Cu(I), reduced to Cu(0) at cathode. Cu(III) is generally uncommon,
however some its complexes are known [12].

The standard reduction potential ( E0) for conversion of each oxidation state to
other are E0(Cu3+/Cu2+) = 2.4V, E0(Cu2+/Cu+) = 0.153V, E0(Cu2+/Cu) =
0.342V, E0(Cu+/Cu) = 0.521V , where potential versus SHE. According to these
standard potentials, the following reactions are spontaneous.

(i) Cu3+ + Cu+ −→ Cu2+.

(ii) Cu3+ + Cu −→ Cu2+ + Cu+.

Characterisation of Copper via invertible subhypergroup Nano topology

Therefore, all possible products in reactions between oxidation states of
Cu which can be produced spontaneously are listed in the following
table:

∗ Cu Cu+ Cu2+ Cu3+

Cu Cu Cu Cu+ Cu2+, Cu Cu2+Cu+

Cu+ Cu, Cu+ Cu+ Cu2+, Cu+ Cu2+

Cu2+ Cu, Cu2+ Cu2+, Cu+ Cu2+ Cu2+, Cu3+

Cu3+ Cu+, Cu2+ Cu2+ Cu2+, Cu3+ Cu3+

Here we rename Cu, Cu+, Cu2+, Cu3+ as follows: Cu = a, Cu+ = b, Cu2+ =
c, Cu3+ = d.

∗ a b c d
a a a,b a,c b,c
b a,b b b,c c
c a,c b,c c c,d
d b,c c c,d d

The hyperstructures ({a,b},*),({a,c},*),({b,c},*) and ({c,d},*) are hypergroups.
If we consider H = {a,b} and S = H is invertible subhypergroup then {{a,b}} is
a partition of H we have a ∈ aS and b ∈ bS. Now A = {a} where LS(A) = ∅
and US(A) = U the invertible subhypergroup nano topology is τS(A) = {H, ∅}.
Similarly if we consider
H = {b,c},H ={a,c},H = {c,d} gives an indiscrete nano topology.
Observation : From the above illustration if spontaneous reaction for Cu forms
hypergroup then the invertible subhypergroup nano topology is an indiscrete nano
topology. Two nano topological spaces carrying the trivial topology are homeomor-
phic iff they have the same cardinality and hence indiscrete space is homeomorphic
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and by Definition 4.7 copper has same crystalline form but different chemical com-
position.
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