A NEW VIEW TO NEAR-RING THEORY: SOFT NEAR-RINGS

ISSN: 0972-7752 (Print)

Akın Osman Atagün and Aslıhan Sezgin

Department of Mathematics, Amasya University, 05100 Amasya, Turkey. E-mail: aslihan.sezgin@amasya.edu.tr

(Received: August 6, 2018)

Abstract: In this paper, we indicate the study of soft near-rings by using the definition of the soft sets. The notions of soft near-rings, soft subnear-rings, soft (left, right) ideals, (left, right) idealistic soft near-rings, soft homomorphisms and soft near-ring homomorphisms are introduced. Also we investigate the soft homomorphism and soft near-ring homomorphism with respect to the homomorphic image and we show that some structures of soft near-rings are preserved under soft near-ring isomorphism.

Keywords and Phrases: Soft sets, Soft near-rings, Idealistic soft near-rings, Soft near-ring homomorphisms.

2010 Mathematics Subject Classification: 03G25,20D05.

1. Introduction

Molodtsov [1] proposed a new approach for modeling vagueness and uncertainty, which is called soft set theory in 1999. Since its inception, Maji et al. [2] and Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagün [4] studied on soft set operations in more detail. Soft set theory has also wide-ranging applications in algebraic structures, for example Aktas and Çağman [5] studied soft groups and Sezgin and Atagün [6] studied on normalistic soft groups as well. Then, Feng et al. [7] introduced and investigated soft semirings, soft subsemirings, soft ideals, idealistic soft semirings and soft semiring homomorphisms. In [8], Zhan and Jun introduced soft BL-algebras on fuzzy sets and in [9], Çağman and Enginoglu defined soft matrices and their operations and constructed a soft max-min decision making method. Acar et al. [10] introduced initial concepts of soft rings. Atagün and Sezgin [11] studied soft substructures of rings, fields and modules and Sezgin et al. [12] introduced the union soft substructures of near-rings and N-groups. Soft set has also studied in [22-24] as regards operations and algebraic structures.

Soft set theory emphasizes a balanced coverage of both theory and practice. Nowadays, it has promoted a breadth of the discipline of Informations Sciences with intelligent systems, approximate reasoning, expert and decision support systems, self-adaptation and self-organizational systems, information and knowledge, modeling and computing with words, especially soft decision making as in the following studies: [16-18] and some other fields as [19-27].

In this paper, we study the near-ring structure as regards soft sets and we define the notion of a soft near-ring and investigate the algebraic properties of soft near-rings in detail. We introduce the notions of soft (left, right) ideals and (left, right) idealistic soft near-rings, soft homomorphism, soft near-ring homomorphism and derive some important properties. Main purpose of this paper is to extend the study of soft near-rings from a theoretical aspect. In [28], the authors investigate the properties of idealistic soft near-rings with respect to the near-ring mappings. This study can be regarded as an extension of this study.

2. Preliminaries

By a near-ring, we shall mean an algebraic system (N, +, .), where

- (N, +) forms a group (not necessarily abelian)
- (N, .) forms a semi-group and
- (a+b)c = ac + bc for all $a,b,c \in N$ (i.e. we study on right near-rings.)

Throughout this paper, N will always denote a right near-ring. A subgroup M of N with $MM \subseteq M$ is called a subnear-ring of N. A normal subgroup I of N is called a right ideal if $IN \subseteq I$ and denoted by $I \triangleleft_r N$. It is called a left ideal if $n(s+i) - ns \in I$ for all $n, s \in N$ and $i \in I$ and denoted by $I \triangleleft_\ell N$. If such a normal subgroup I is both left and right ideal in N, then it is called an ideal in N and denoted by $I \triangleleft N$. For all undefined concepts and notions we refer to [29,30]. Molodtsov [1] defined the soft set in the following manner: Let U be an initial universe set, E be a set of parameters, P(U) be the power set of U and $A \subseteq E$.

Definition 1. [1] A pair (F, A) is called a soft set over U, where F is a mapping given by $F: A \to P(U)$.

In other words, a soft set over U is a parameterized family of subsets of U. For $\varepsilon \in A$, $F(\varepsilon)$ may be considered as the set of ε -elements of the soft set (F, A) or as the set of ε -approximate elements of the soft set.

Definition 2. [3] Let (F, A) and (G, B) be two soft sets over a common universe U such that $A \cap B \neq \emptyset$. The restricted intersection of (F, A) and (G, B) is denoted

by $(F, A) \cap_{\mathcal{R}} (G, B)$, and is defined as $(F, A) \cap_{\mathcal{R}} (G, B) = (H, C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cap G(c)$.

Definition 3. [3] Let (F, A) and (G, B) be two soft sets over a common universe U. The extended union of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions: (i) $C = A \cup B$; (ii) for all $e \in C$,

$$H(e) = \begin{cases} F(e) & \text{if } e \in A \setminus B, \\ G(e) & \text{if } e \in B \setminus A, \\ F(e) \cup G(e) & \text{if } e \in A \cap B. \end{cases}$$

This relation is denoted by $(F, A) \sqcup_{\varepsilon} (G, B) = (H, C)$.

Definition 4. [2] If (F, A) and (G, B) are two soft sets over a common universe U, then "(F, A) AND (G, B)" denoted by $(F, A)\widetilde{\wedge}(G, B)$ is defined by $(F, A)\widetilde{\wedge}(G, B) = (H, A \times B)$, where $H(x, y) = F(x) \cap G(y)$ for all $(x, y) \in A \times B$.

Definition 5. [2] For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B), denoted by $(F, A) \subset (G, B)$, if it satisfies: (i) $A \subset B$; (ii) for every $\varepsilon \in A$, $F(\varepsilon)$ and $G(\varepsilon)$ are identical approximations.

Definition 6. [7] For a soft set (F, A), the set $Supp(F, A) = \{x \in A \mid F(x) \neq \emptyset\}$ is called the support of the soft set (F, A). The null soft set is a soft set with an empty support, and a soft set (F, A) is non-null if $Supp(F, A) \neq \emptyset$.

3. Soft Near-rings

In this paper, we define soft near-rings, soft subnear-rings by using the definition of the soft sets also we investigate their related properties.

Definition 7. Let (F, A) be a non-null soft set over a near-ring N. Then (F, A) is called a soft near-ring over N if F(x) is a subnear-ring of N for all $x \in Supp(F, A)$.

Example 1. Consider the additive group $(\mathbb{Z}_6, +)$. Under a multiplication defined by following table, $(\mathbb{Z}_6, +, .)$ is a (right) near-ring. Let (F, A) be a soft set over \mathbb{Z}_6 , where $A = \mathbb{Z}_6$ and $F: A \to P(\mathbb{Z}_6)$ is a set-valued function defined by

$$F(x) = \{ y \in \mathbb{Z}_6 \mid xy \in \{0, 3\} \}$$

for all $x \in A$. Then $F(0) = F(3) = \mathbb{Z}_6$ and $F(1) = F(2) = F(4) = F(5) = \{0, 3\}$ are subnear-rings of \mathbb{Z}_6 . Hence (F, A) is a soft near-ring over \mathbb{Z}_6 . Let (G, A) be a soft set over \mathbb{Z}_6 , where $G: A \to P(\mathbb{Z}_6)$ is defined by

$$G(x) = \{ y \in \mathbb{Z}_6 \mid xy \in \{1, 2, 3\} \}$$

for all $x \in A$. Then $G(1) = \{0, 1, 3, 4\}$ is not a subnear-ring of \mathbb{Z}_6 and hence (G, A) is not a soft near-ring over \mathbb{Z}_6 .

Theorem 1. Let (F, A), (G, B) and (K, A) be soft near-rings over N. Then

- a) If it is non-null, then the soft set $(F, A)\widetilde{\wedge}(G, B)$ is a soft near-ring over N.
- b) If it is non-null, then the bi-intersection $(F, A) \cap_{\mathcal{R}} (K, A)$ is a soft near-ring over N.
- c) If A and B are disjoint, then $(F, A) \sqcup_{\varepsilon} (G, B)$ is a soft near-ring over N.
- **Proof.** (a) By Definition 4, let $(F,A)\widetilde{\wedge}(G,B)=(H,A\times B)$, where $H(x,y)=F(x)\cap G(y)$ for all $(x,y)\in A\times B$. Then by hypothesis, $(H,A\times B)$ is a non-null soft set over N. If $(x,y)\in Supp(H,A\times B)$, then $H(x,y)=F(x)\cap G(y)\neq\emptyset$. It follows that $\emptyset\neq F(x)$ and $\emptyset\neq G(y)$ are both subnear-rings of N. Hence H(x,y) is a subnear-ring for all $(x,y)\in Supp(H,A\times B)$. Therefore $(H,A\times B)$ is a soft near-ring over N.
- (b) By Definition 2, let $(F, A) \cap_{\mathcal{R}} (K, A) = (H, A)$, where $H(x) = F(x) \cap K(x)$ for all $x \in A$. Suppose that (H, A) is a non-null soft set over N. If $x \in Supp(H, A)$, then $H(x) = F(x) \cap K(x) \neq \emptyset$. Thus $\emptyset \neq F(x)$ and $\emptyset \neq K(x)$ are both subnearings of N. Hence H(x) is a subnear-ring of N for all $x \in Supp(H, A)$. Therefore (H, A) is a soft near-ring over N as required.
- (c) By Definition 3, we can write $(F, A) \sqcup_{\varepsilon} (G, B) = (H, A \cup B)$, where

$$H(x) = \begin{cases} F(x) & \text{if } x \in A \setminus B, \\ G(x) & \text{if } x \in B \setminus A, \\ F(x) \cup G(x) & \text{if } x \in A \cap B \end{cases}$$

for all $x \in A \cup B$. Since $A \cap B = \emptyset$, it follows that either $x \in A \setminus B$ or $x \in B \setminus A$ for all $x \in A \cup B$. If $x \in A \setminus B$, then H(x) = F(x) is a subnear-ring of N and if

 $x \in B \setminus A$, then H(x) = G(x) is a subnear-ring of N. Thus, $(H, A \cup B)$ is a soft near-ring over N.

Definition 8. Let (F, A) and (G, B) be two soft near-rings over N_1 and N_2 , respectively. The product of soft near-rings (F, A) and (G, B) is defined as $(F, A) \times (G, B) = (U, A \times B)$, where $U(x, y) = F(x) \times G(y)$ for all $(x, y) \in A \times B$.

Theorem 2. Let (F, A) and (G, B) be two soft near-rings over N_1 and N_2 , respectively. If it is non-null, then the product $(F, A) \times (G, B)$ is a soft near-ring over $N_1 \times N_2$.

Proof. By Definition 8, let $(F, A) \times (G, B) = (U, A \times B)$, where $U(x, y) = F(x) \times G(y)$ for all $(x, y) \in A \times B$. Then by hypothesis, $(U, A \times B)$ is a non-null soft set over $N_1 \times N_2$. If $(x, y) \in Supp(U, A \times B)$, then $U(x, y) = F(x) \times G(y) \neq \emptyset$. Since $\emptyset \neq F(x)$ is a subnear-ring of N_1 and $\emptyset \neq G(y)$ is a subnear-ring of N_2 , it follows that U(x, y) is a subnear-ring of $N_1 \times N_2$ for all $(x, y) \in Supp(U, A \times B)$. Therefore $(U, A \times B)$ is a soft near-ring over $N_1 \times N_2$.

For a near-ring N, the zero-symmetric part of N denoted by N_0 is defined by $N_0 = \{n \in N \mid n0 = 0\}$, and the constant part of N denoted by N_c is defined by $N_c = \{n \in N \mid n0 = n\}$. It is well known that N_0 and N_c are subnear-rings of N [29]. For a near-ring N, we can obtain at least two soft near-rings over N using N_0 and N_c . We give these soft near-rings by the following examples:

Example 2. Let N be a near-ring, $A = N_0$ and let $F_0: A \to P(N)$ be a set-valued function defined by $F_0(x) = \{y \in A \mid yx \in N_0\}$ for all $x \in A$. Then (F_0, N_0) is a soft near-ring over N. To see this, we need to show the following:

1.
$$a - b \in F_0(x)$$

$$2. ab \in F_0(x)$$

for all $x \in Supp(F_0, N_0)$ and for all $a, b \in F_0(x)$. Since $a, b \in F_0(x)$, then $a \in N_0$, $b \in N_0$, $ax \in N_0$ and $bx \in N_0$. Since $(N_0, +)$ is a subgroup of (N, +), then $a - b \in N_0$ and $(a - b)x = ax - bx \in N_0$, i.e. (1) is satisfied.

To prove (2), we need to show that $ab \in N_0$ and $(ab)x \in N_0$. Since a, b, ax and $bx \in N_0$, then (ab)0 = a(b0) = a0 = 0 and ((ab)x)0 = a(bx)0 = a0 = 0. Hence $ab \in N_0$ and $(ab)x \in N_0$, i.e. (2) is satisfied. Therefore $F_0(x)$ is a subnear-ring of N for all $x \in Supp(F_0, N_0)$, i.e. (F_0, N_0) is a soft near-ring over N.

Example 3. Now let B = N and let $F_c : B \to P(N)$ be a set-valued function defined by $F_c(x) = \{y \in B \mid yx \in N_c\}$ for all $x \in B$. Then (F_c, N) is a soft near-ring over N. In fact, for all $x \in Supp(F_c, N)$ and for all $a, b \in F_c(x)$;

((a-b)x)0 = (ax)0 - (bx)0 = ax - bx = (a-b)x, since $ax \in N_c$ and $bx \in N_c$. Then $(a-b)x \in N_c$, i.e. $a-b \in F_c(x)$. And ((ab)x)0 = a((bx)0) = a(bx) = (ab)x, since $bx \in N_c$. Then $(ab)x \in N_c$, i.e. $ab \in F_c(x)$. Therefore $F_c(x)$ is a subnear-ring of N for all $x \in Supp(F_c, N)$, i.e. (F_c, N) is a soft near-ring over N.

Definition 9. Let (F, A) be a soft near-ring over N. We have the following:

- a) (F, A) is called trivial if $F(x) = \{0_N\}$ for all $x \in Supp(F, A)$.
- b) (F, A) is said to be whole if F(x) = N for all $x \in Supp(F, A)$.

Proposition 1. Let (F, A) and (G, B) be soft near-rings over N, where $A \cap B \neq \emptyset$. Then,

- i) If (F, A) and (G, B) are trivial soft near-rings over N, then $(F, A) \cap_{\mathcal{R}} (G, B)$ is a trivial soft near-ring over N.
- ii) If (F, A) and (G, B) are whole soft near-rings over N, then $(F, A) \cap_{\mathcal{R}} (G, B)$ is a whole soft near-ring over N.
- iii) If (F, A) is a trivial soft near-ring over N and (G, A) is a whole soft near-rings over N, then $(F, A) \cap_{\mathcal{R}} (G, B)$ is a trivial soft near-rings over N.

Proof. The proof is easily seen by Definition 2, Definition 9, Theorem 1 (b).

Proposition 2. Let (F, A) and (G, B) be two soft near-rings over N_1 and N_2 , respectively. Then,

- i) If (F, A) and (G, B) are trivial soft near-rings over N_1 and N_2 , respectively, then $(F, A) \times (G, B)$ is a trivial soft near-ring over $N_1 \times N_2$.
- ii) If (F, A) and (G, B) are whole soft near-rings over N_1 and N_2 , respectively, then $(F, A) \times (G, B)$ is a whole soft near-ring over $N_1 \times N_2$.

Proof. The proof is easily seen by Definition 8, Definition 9 and Theorem 2.

Definition 10. Let (F, A) and (G, B) be soft near-rings over N. Then the soft near-ring (F, A) is called a soft subnear-ring of (G, B) if it satisfies:

- i) $A \subset B$
- ii) F(x) is a subnear-ring of G(x) for all $x \in Supp(F, A)$.

Proposition 3. Let (F, A) and (G, A) be soft near-rings over N. Then we have the following:

- a) If $F(x) \subset G(x)$ for all $x \in A$, then (F, A) is a soft subnear-ring of (G, A).
- b) $(F, A) \cap_{\mathcal{R}} (G, A)$ is a soft subnear-ring of both (F, A) and (G, A) if it is non-null.
- c) If $(G, B)\widetilde{\subset}(F, A)$, then (G, B) is a soft subnear-ring of (F, A).

Proof. a) If $F(x) \subset G(x)$ for all $x \in A$, it is obvious that F(x) is a subnear-ring of G(x). Hence the result is seen by Definition 10.

- **b)** It follows from Proposition 3(a) and Theorem 1(b).
- c) Since F(x) and G(x) are subnear-rings of N for all $x \in Supp(F, A)$ and for all $x \in Supp(G, B)$, respectively and G(x) and F(x) are identical approximations for all $x \in Supp(G, B)$ and $B \subseteq A$, the proof is completed by Proposition 3(a).

4. Soft ideals and idealistic soft near-rings

Definition 11. Let (F, A) be a soft near-ring over N. A non-null soft set (G, I) over N is called a soft left (resp. right) ideal of (F, A) denoted by $(G, I) \widetilde{\lhd_{\ell}}(F, A)$ (resp. $(G, I) \widetilde{\lhd_{\ell}}(F, A)$) if it satisfies:

- i) $I \subset A$
- ii) $G(x) \triangleleft_{\ell} F(x)$ (resp. $G(x) \triangleleft_{r} F(x)$) for all $x \in Supp(G, I)$.

If (G, I) is both soft left and soft right ideal of (F, A), then it is said that (G, I) is a soft ideal of (F, A) and denoted by $(G, I) \widetilde{\lhd} (F, A)$.

Example 4. Let $N = (\mathbb{Z}_6, +, .)$ be the near-ring given in Example 1. Let $A = \mathbb{Z}_6$ and let $F : A \to P(N)$ be a set-valued function defined by

$$F(x) = \{ y \in A \mid xy \in \{0, 2, 4\} \}$$

for all $x \in A$. Then (F, A) is a non-null soft set over N. Let $I = \{0, 2, 4\}$ and $G: I \to P(N)$ be a set-valued function defined by

$$G(x) = \{ y \in I \mid xy \in \{0, 2, 4\} \}$$

for all $x \in I$. Then we have $F(0) = F(2) = F(4) = \mathbb{Z}_6$ and $F(1) = F(3) = F(5) = \emptyset$, $G(0) = G(2) = G(4) = \{0, 2, 4\}$. It is easily seen that for all $x \in Supp(G, I) = \{0, 2, 4\}$, $G(x) \triangleleft F(x)$ and hence $(G, I) \widetilde{\triangleleft}(F, A)$.

Theorem 3. Let (G_1, I_1) and (G_2, I_2) be soft left ideals (resp. soft right ideals, soft ideals) of a soft near-ring (F, A) over a near-ring N. Then the soft set $(G_1, I_1) \cap_{\mathcal{R}} (G_2, I_2)$ is a soft left ideal (resp. soft right ideal, soft ideal) of (F, A) if

it is non-null.

Proof. We give the proof for soft left ideals; the same proof can be seen for soft right ideals and hence for soft ideals. Assume that $(G_1, I_1) \widetilde{\lhd_{\ell}}(F, A)$ and $(G_2, I_2) \widetilde{\lhd_{\ell}}(F, A)$. By Definition 2, $(G_1, I_1) \cap_{\mathcal{R}} (G_2, I_2) = (G, I)$, where $I = I_1 \cap I_2$ and $G(x) = G_1(x) \cap G_2(x)$ for all $x \in I$. Since $I_1 \subset A$ and $I_2 \subset A$, it is clear that $I \subset A$. Suppose that the soft set (G, I) is non-null. If $x \in Supp(G, I)$, then $G(x) = G_1(x) \cap G_2(x) \neq \emptyset$. Since $G_1(x) \triangleleft_{\ell} F(x)$, $G_2(x) \triangleleft_{\ell} F(x)$, and the intersection of left ideals is a left ideal in near-rings, $G(x) \triangleleft_{\ell} F(x)$ for all $x \in Supp(G, I)$. Therefore $(G_1, I_1) \cap_{\mathcal{R}} (G_2, I_2) \widetilde{\lhd_{\ell}}(F, A)$.

Theorem 4. Let (G_1, I_1) and (G_2, I_2) be soft left ideals (resp. soft right ideals, soft ideals) of a soft near-ring (F, A) over a near-ring N. Then the soft set $(G_1, I_1) \sqcup_{\varepsilon} (G_2, I_2)$ is a soft left ideal (resp. soft right ideal, soft ideal) of (F, A) if I_1 and I_2 are disjoint.

Proof. Assume that $(G_1, I_1) \widetilde{\lhd_{\ell}}(F, A)$ and $(G_2, I_2) \widetilde{\lhd_{\ell}}(F, A)$. By Definition 3, $(G_1, I_1) \sqcup_{\varepsilon} (G_2, I_2) = (G, I)$, where $I = I_1 \cup I_2$ and for all $x \in I$

$$G(x) = \begin{cases} G_1(x) & \text{if } x \in I_1 \setminus I_2, \\ G_2(x) & \text{if } x \in I_2 \setminus I_1, \\ G_1(x) \cup G_2(x) & \text{if } x \in I_1 \cap I_2. \end{cases}$$

Since $I_1 \subset A$ and $I_2 \subset A$, it is clear that $I \subset A$. If $I_1 \cap I_2 = \emptyset$, then for all $x \in Supp(G, I)$, we know that either $x \in I_1 \setminus I_2$ or $x \in I_2 \setminus I_1$. If $x \in I_1 \setminus I_2$, then $\emptyset \neq G_1(x) = G(x) \triangleleft_{\ell} F(x)$ and if $x \in I_2 \setminus I_1$, then $\emptyset \neq G_2(x) = G(x) \triangleleft_{\ell} F(x)$ for all $x \in Supp(G, I)$. Therefore $(G_1, I_1) \sqcup_{\varepsilon} (G_2, I_2) \widetilde{\triangleleft_{\ell}}(F, A)$. The proof can be seen for soft right ideals and hence for soft ideals in the same way.

Example 5. Let (F, A) be the soft near-ring over the near-ring $N = (\mathbb{Z}_6, +, .)$ and let $(G, I) \widetilde{\lhd}(F, A)$ be the ones given in Example 4. Let $K : A \to P(N)$ be a set-valued function defined by

$$K(x) = \{ y \in A \mid xy = 0 \}$$

for all $x \in A$. Then $K(0) = \mathbb{Z}_6$, $K(1) = \emptyset$, $K(2) = \{0,3\}$, $K(3) = \emptyset$, $K(4) = \{0,3\}$ and $K(5) = \emptyset$. Since $K(x) \triangleleft F(x)$ for all $x \in Supp(K,A)$, then $(K,A) \stackrel{\sim}{\triangleleft} (F,A)$. We consider the bi-intersection of the soft ideals (K,A) and (G,I). Then, $(K,A) \cap_{\mathcal{R}} (G,I) = (H,A \cap I = I)$ where $H(x) = K(x) \cap G(x)$ for all $x \in I$. Since $Supp(H,I) = \{0,2,4\}$, it is non-null. For all $x \in Supp(H,I)$, we see that $H(0) = \{0,2,4\} \triangleleft F(0)$, $H(2) = \{0\} \triangleleft F(2)$ and $H(4) = \{0\} \triangleleft F(4)$. Therefore

 $(K,A) \cap_{\mathcal{R}} (G,I) \widetilde{\lhd} (F,A).$

Now we consider $(K, A) \sqcup_{\varepsilon} (G, I)$. Then $(K, A) \sqcup_{\varepsilon} (G, I) = (T, A \cup I = I)$, where

$$T(x) = \begin{cases} K(x) & \text{if } x \in A \setminus I = \{1, 3, 5\}, \\ G(x) & \text{if } x \in I \setminus A = \emptyset, \\ K(x) \cup G(x) & \text{if } x \in A \cap I = \{0, 2, 4\} \end{cases}$$

for all $x \in A$. Then $Supp(T, A) = \{0, 2, 4\}$ and $T(0) = \mathbb{Z}_6$, $T(2) = \{0, 2, 3, 4\} = T(4)$. Nevertheless, T(2) is not an ideal of F(2) and hence $(K, A) \sqcup_{\varepsilon} (G, I)$ is not a soft ideal of (F, A). Namely, we see that the condition 'disjoint' can not be removed from Theorem 4.

Definition 12. Let (F,A) be a soft near-ring over N. If for all $x \in Supp(F,A)$ $F(x) \triangleleft_{\ell} N$ (resp. $F(x) \triangleleft_{r} N$, $F(x) \triangleleft_{r} N$), then (F,A) is called a left idealistic (resp. right idealistic, idealistic) soft near-ring over N.

Example 6. Let the soft near-rings (F, A) and (K, A) be the ones given in Example 5 over the near-ring $N = (\mathbb{Z}_6, +, .)$. Then for all $x \in Supp(F, A) = \{0, 2, 4\}$, $F(x) \triangleleft N$, i.e. (F, A) is an idealistic soft near-ring over N. Since $Supp(K, A) = \{0, 2, 4\}$ and $K(0) = \mathbb{Z}_6 \triangleleft N$, $K(2) = K(4) = \{0, 3\} \triangleleft N$, then (K, A) is also an idealistic soft near-ring over N.

Theorem 5. Let (F, A) and (G, B) be idealistic soft near-rings over N. Then we have the following:

- a) If it is non-null, $(F, A) \cap_{\mathcal{R}} (G, B)$ is an idealistic soft near-ring over N.
- b) If A and B are disjoint, then $(F, A) \sqcup_{\varepsilon} (G, B)$ is an idealistic soft near-ring over N.
- c) If it is non-null, $(F, A)\widetilde{\wedge}(G, B)$ is an idealistic soft near-ring over N.

Proof. When considering the definition of ideal of N, the proof is similar to the proof of 1, hence omitted.

Definition 13. A near-ring N is said to satisfy the <u>condition (C)</u> if $I \triangleleft J \triangleleft N$, then $I \triangleleft N$.

Example 7. Consider the near-ring $N = (\mathbb{Z}_6, +, .)$ in Example 1. It can be easily seen that N satisfies the condition (C).

Proposition 4. Let N be a near-ring which satisfies the condition (C) and let (F, A) be an idealistic soft near-ring over N. If (G, I) is a soft ideal of (F, A), then (G, I) is also an idealistic soft near-ring over N.

Proof. If $(G, I) \preceq (F, A)$, then for all $x \in Supp(G, I)$, $G(x) \lhd F(x)$. Since (F, A) is an idealistic soft near-ring over N, then for all $x \in Supp(F, A)$, $F(x) \lhd N$. So we have $G(x) \lhd F(x) \lhd N$ for all $x \in Supp(G, I)$. Since N satisfies condition (C), $G(x) \lhd N$ for all $x \in Supp(G, I)$. G(x) is also a subnear-ring of N for all $x \in Supp(G, I)$, since every ideal of N is also a subnear-ring of N. Therefore (G, I) is a soft near-ring over N. Furthermore, (G, I) is an idealistic soft near-ring over N.

Example 8. Let (F, A) be the soft near-ring over N and let $(G, I) \stackrel{\sim}{\lhd} (F, A)$ be the ones given in Example 4. It is seen that (G, I) is also an idealistic soft near-ring over N.

Definition 14. Let (F, A) and (G, B) be soft near-rings over two near-rings N_1 and N_2 , respectively. Let $f: N_1 \to N_2$ and $g: A \to B$ be two mappings. Then the pair (f, g) is called a soft mapping from (F, A) to (G, B). A soft mapping (f, g) is called a soft homomorphism if it satisfies the conditions below:

- i) f is a near-ring homomorphism.
- ii) g is a mapping.
- iii) f(F(x)) = G(g(x)) for all $x \in A$.

If (f,g) is a soft homomorphism and f and g are both surjective, then we say that (F,A) is softly near-ring homomorphic to (G,B) under the soft homomorphism (f,g), which is denoted by $(F,A) \sim (G,B)$. Then, (f,g) is called a soft near-ring homomorphism. Furthermore, if f is an isomorphism of near-rings and g is a bijective mapping, then (f,g) is said to be a soft near-ring isomorphism. In this case, we say that (F,A) is soft isomorphic to (G,B), which is denoted by $(F,A) \simeq (G,B)$.

Example 9. Consider the near-ring $(\mathbb{Z}_6, +, .)$ given in Example 1. And let the subnear-ring $\{0, 2, 4\}$ of $(\mathbb{Z}_6, +, .)$. Let $f : \mathbb{Z}_6 \to \{0, 2, 4\}$ be the mapping defined by f(x) = 4x. Obviously, f is an epimorphism of near-rings. Let $g : \mathbb{Z}_6 \to \{0, 2, 4\}$ by g(x) = 2x for all $x \in \mathbb{Z}_6$. Then one can easily say that g is surjective. Let (F, \mathbb{Z}_6) be a soft set over \mathbb{Z}_6 , where $F : \mathbb{Z}_6 \to P(\mathbb{Z}_6)$ is a function by $F(x) = \{0\} \cup \{y \in \mathbb{Z}_6 \mid 3x = y\}$ for all $x \in \mathbb{Z}_6$. It can be easily illustrated that $F(x) = \{0, 3\}$ is a subnear-ring of \mathbb{Z}_6 for all $x \in \mathbb{Z}_6$. Thus (F, \mathbb{Z}_6) is a soft near-ring over \mathbb{Z}_6 . Let $(G, \{0, 2, 4\})$ be a soft set over $\{0, 2, 4\}$, where $G : \{0, 2, 4\} \to P(\{0, 2, 4\})$ is a function with $G(x) = \{y \in \{0, 2, 4\} \mid x0 = y\}$ for all $x \in \{0, 2, 4\}$. Then one can show that $(G, \{0, 2, 4\})$ is a soft near-ring over $\{0, 2, 4\}$. Furthermore, $f(F(x)) = f(\{0, 3\}) = \{0\}$ and $G(g(0)) = G(0) = \{0\}$, $G(g(1)) = G(2) = \{0\}$,

 $G(g(2)) = G(4) = \{0\}, G(g(3)) = G(0) = \{0\}, G(g(4)) = G(2) = \{0\}, G(g(5)) = G(4) = \{0\} \text{ for all } x \in \mathbb{Z}_6, \text{ so it is to say that } f(F(x)) = G(g(x)) \text{ for all } x \in \mathbb{Z}_6.$ Therefore (f, g) is a soft near-ring homomorphism and $(F, \mathbb{Z}_6) \sim (G, \{0, 2, 4\})$.

Theorem 6. Let (F,A), (G,B) and (H,C) be soft near-rings over N_1 , N_2 and N_3 , respectively. Let the soft mapping (f,g) from (F,A) to (G,B) is a soft homomorphism from N_1 to N_2 and the soft mapping (f^*,g^*) from (G,B) to (H,C) a soft homomorphism from N_2 to N_3 . Then the soft mapping $(f^* \circ f, g^* \circ g)$ from (F,A) to (H,C) is a soft homomorphism from N_1 to N_3 .

Proof. Let the soft mapping (f,g) from N_1 to N_2 be a soft homomorphism from (F,A) to (G,B), then there exists a near-ring homomorphism f such that $f:N_1 \to N_2$, and a mapping g such that $g:A \to B$ which satisfy f(F(x)) = G(g(x)) for all $x \in A$. And let the soft mapping (f^*,g^*) from N_2 to N_3 be a soft homomorphism from (G,B) to (H,C), then there exists a near-ring homomorphism f^* such that $f^*:N_2 \to N_3$, and a mapping g^* such that $g^*:B \to C$ which satisfy $f^*(G(x)) = H(g^*(x))$ for all $x \in B$. We need to show that $(f^* \circ f)(F(x)) = H((g^* \circ g)(x))$ for all $x \in A$. Let $x \in A$, then

$$(f^* \circ f)(F(x)) = f^*(f(F(x))) = f^*(G(g(x))) = H(g^*(g(x))) = H((g^* \circ g)(x))$$

Therefore, the proof is completed.

Theorem 7. The relation \simeq is an equivalence relation on soft near-rings.

Proof. Straightforward, hence omitted.

Theorem 8. Let N_1 and N_2 be near-rings and (F, A), (G, B) be soft sets over N_1 and N_2 , respectively. If (F, A) is a soft near-ring over N_1 and $(F, A) \simeq (G, B)$, then (G, B) is a soft near-ring over N_2 .

Proof. We need to show that G(y) is a subnear-ring of N_2 for all $y \in Supp(G, B)$. Since $(F, A) \simeq (G, B)$, there exists a near-ring epimorphism f from N_1 to N_2 and a bijective mapping g from A to B which satisfies f(F(x)) = G(g(x)) for all $x \in A$. Assume that (F, A) is a soft near-ring over N_1 . Then F(x) is a subnear-ring of N_1 for all $x \in Supp(F, A)$, therefore f(F(x)) is a subnear-ring of N_2 for all $x \in Supp(F, A)$. Since g is a bijective mapping, for all $y \in Supp(G, B) \subseteq B$, there exists an $x \in A$ such that y = g(x). Hence G(y) is a subnear-ring of N_2 for all $y \in Supp(G, B)$ since f(F(x)) = G(y).

Theorem 9. Let $f: N_1 \to N_2$ be an epimorphism of near-rings and (F, A), (G, B) be two soft near-rings over N_1 and N_2 , respectively.

i) The soft mapping (f, I_A) from (F, A) to (H, A) is a soft near-ring homomor-

- phism from N_1 to N_2 , where $I_A : A \to A$ is the identity mapping and the set valued function $H : A \to P(N_2)$ is defined by H(x) = f(F(x)) for all $x \in A$.
- ii) If $f: N_1 \to N_2$ is an isomorphism of near-rings, then the soft mapping (f^{-1}, I_B) from (G, B) to (T, B) is soft near-ring homomorphism from N_2 to N_1 , where $I_B: B \to B$ is the identity mapping and the set valued function $T: B \to P(N_1)$ is defined by $T(x) = f^{-1}(G(x))$ for all $x \in B$.

Proof. It follows from Definition 14, therefore omitted.

5. Conclusion

Throughout this paper, in a near-ring structure we study the algebraic properties of soft sets. This work bears on soft near-rings, soft subnear-rings, soft (left, right) ideals, soft ideals, (left, right) idealistic soft near-rings and soft homomorphisms. To extend this work, one could study the ideals of soft near-rings.

References

- [1] Molodtsov D, Soft set theory-first results, Comput Math Appl, 37(1999), 19-31.
- [2] Maji PK, Biswas R, Roy AR, Soft set theory, Comput Math Appl, 45(2003), 555-562.
- [3] Ali MI, Feng F, Liu X, Min WK, Shabir M, On some new operations in soft set theory, *Comput Math Appl*, 57(2009), 1547-1553.
- [4] Sezgin A, Atagün AO, On operations of soft sets, Comput Math Appl, 61(5)(2011), 1457-1467.
- [5] Aktas H, Çağman N, Soft sets and soft groups, Inform Sci, 177(2007), 2726-2735.
- [6] Sezgin A, Atagün AO, Soft groups and normalistic soft groups, *Comput Math Appl*, 62(2)(2011), 685-698.
- [7] Feng F, Jun YB, Zhao X, Soft semirings, Comput Math Appl, 56(2008), 2621-2628.
- [8] Zhan J, Jun YB, Soft BL-algebras based on fuzzy sets, *Comput. Math. Appl.*, 59(6)(2010), 2037-2046.

- [9] Çağman N, Enginoğlu S, Soft matrix theory and its decision making, *Comput Math Appl*, 59(2010), 3308-3314.
- [10] Acar U, Koyuncu F, Tanay B, Soft sets and soft rings, Comput Math Appl, 59(2010), 3458-3463.
- [11] Atagün AO, Sezgin A, Soft substructures of rings, fields and modules, *Comput Math Appl*, 61(3) (2011), 592-601.
- [12] Sezgin A and Atagün A O, Çağman N, Union soft substructures of near-rings and N-groups, Neural Comput. Appl. (2011) DOI: 10.1007/s00521-011-0732-1.
- [13] Ali MA, Soft ideals and soft filters of soft ordered semigroups, *Computers* and *Mathematics with Applications*, 62(2011), 3396-3403.
- [14] Ali MA, Shabir M, Naz M, Algebraic structures of soft sets associated with new operations, *Computers and Mathematics with Applications*, 61(2011), 2647-2654.
- [15] Feng F, Ali MA, Shabir M, Soft relations applied to semigroups, *Filomat*, 27(2013), 1183-1196.
- [16] Çağman N, Enginoğlu S, Soft set theory and uni-int decision making, Eure-pean Journal of Operational Research, 207(2010), 848-855.
- [17] Maji PK, Roy AR and Biswas R, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44(2002), 1077-1083.
- [18] Riaz M and Hashmi MR, Fixed points of fuzzy neutrosophic soft mapping with decision-making, *Fixed point theory and applications*, 7(2018), 1-10.
- [19] Feng F, Jun YB, Liu XY, Li LF, An adjustable approach to fuzzy soft set based decision making, *Journal of Computational and Applied Mathematics*, 234(2010), 10-20.
- [20] Feng F, Li C, Davvas B, Ali MI, Soft sets combined with fuzzy sets and rough sets: a tentative approach, *Soft Computing*, 14(2010)(6), 899-911.
- [21] Feng F, Liu XY, Leoreanu-Fotea V, Jun YB, Soft sets and soft rough sets, *Information Sciences* 181(2011), 1125-1137.

- [22] Zou Y, Xiao Z, Wang, X, Introduction to linear representations of soft groups, Journal of Intelligent and Fuzzy Systems, 29(2015), 1511-1519.
- [23] Jianming Z, Wieslaw AD, Neggers J, A new soft union set: characterizations of hemirings, *International Journal of Machine Learning and Cybernetics*, DOI 10.1007/s13042-015-0343-8,(2015) 1-11.
- [24] Atagn, AO, Aygn, Emin, Groups of soft sets, Journal of Intelligent and Fuzzy Systems, 30(2016), 729-733.
- [25] Zorlutuna I, Çakır H, On Continuity of Soft Mappings, Applied Mathematics and Information Science, 9(2015), 403-409.
- [26] Riaz M and Hashmi MR, Fuzzy Parameterized Fuzzy Soft Compact Spaces with Decision-Making, *Punjab University Journal of mathematics*, 50(2)(2018), 131-145.
- [27] Riaz M, Hashmi MR and Farooq A, Fuzzy Parameterized Fuzzy Soft Metric spaces, *Journal of Mathematical Analysis*, 9(2)(2018), 25-36.
- [28] Sezgin A, Atagün AO, Aygün E, A note on soft near-rings and idealistic soft near-rings, *Filomat*, 25(1)(2011), 53-68.
- [29] Pilz, *G Near-rings*, North Holland Publishing Company, Amsterdam-New York-Oxford, 1983.
- [30] Taşdemir F, Completely Equi prime Ideals of Near-Ring Modules, *Karaelmas Science and Engineering Journal*, 8(1)(2018), 79-83.