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Abstract: In this paper, we establish modular relations involving the functions,

S(q) :=
∑
∞

n=0
qn
2+n

(q2;q2)n
and T (q) :=

∑
∞

n=0
qn
2

(q2;q2)n
, which are analogous to Ra-

manujan’s modular identities. Furthermore, we extract some partition results
from them.
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1. Introduction

The famous Roger’s-Ramanujan functions G(q) and H(q) are

G(q) :=
∞∑

n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
(1.1)

and

H(q) :=
∞∑

n=0

qn(n+1)

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
, (1.2)

where, as customary

(a; q)n =
n−1∏

k=0

(1− aqk),
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and

(a; q)∞ =
∞∏

n=0

(1− aqn), |q| < 1

Birch [6] published 40 identities conjectured by Ramanujan involving the func-
tions G(q) and H(q). Rogers [14], Watson [15] had proved 16 of these identities.
By combining and extending the methods of Rogers and Watson, in his Ph. D.
thesis, Bressoud [7] proved fifteen, out of forty identities. His published paper
[8] contains proofs of the general identities from [7], that he developed in order
to prove Ramanujan’s identities. Biagioli [5] used modular forms to prove eight
more identities of Ramanujan. On employing Ramanujan’s theta function identi-
ties and modular equations found in [13], Berndt, et al. [3], Berndt and Yesilyurt
[4] found new proofs of all forty identities in the spirit of Ramanujan.

Two identities analogous to the Rogers-Ramanujan identities are the so called
Göllnitz-Gordon identities [10,11] which are expressed by the equations

L(q) :=
∞∑

n=0

(−q; q2)n
(q2; q2)n

qn
2

=
1

(q; q8)∞(q4; q8)∞(q7; q8)∞
, (1.3)

and

M(q) :=
∞∑

n=0

(−q; q2)n
(q2; q2)n

qn
2+2n =

1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
. (1.4)

The Rogers-Ramanujan and the Göllnitz-Gordon functions share some re-
markable properties. For example, the quotients of G(q) and H(q) gives the
celebrated Rogers-Ramanujan continued fraction, while the quotient of L(q) and
M(q) gives the Ramanujan Göllnitz-Gordon continued fraction [12, p.229], [10,11].
Moreover (1.1),(1.2),(1.3),(1.4) all have elegant partition interpretations. For de-
tails see [1]. By using methods of Rogers [14] and Bressoud [7], Huang [12],
obtained eighteen modular relations involving L(q) and M(q), which are analo-
gous to the forty identities of Ramanujan for G(q) and H(q). Huang [12] also
found applications of these modular relations to partitions and colored partitions.

Motivated by these, in Section 2, we establish certain modular relations for
the functions S(q) and T (q), which are defined as

S(q) :=
∞∑

n=0

qn
2+n

(q2; q2)n
=

1

(q2; q4)∞
, (1.5)

and

T (q) :=
∞∑

n=0

qn
2

(q2; q2)n
=

(q2; q4)∞
(q; q4)∞(q3; q4)∞

. (1.6)
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The quotient of S(q) and T (q) gives the Ramanujan continued fraction [2,
p.221, Entry 1(i)].

The relations that we obtain are rich with applications to colored partitions.
In Section 3, we derive some interesting results of colored partitions. We now
recall some definitions and certain identities stated by Ramanujan which will be
used in the next sections. The Ramanujan’s definition of general theta function
is given by

f (a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a, ab)∞(−b, ab)∞(ab, ab)∞, |ab| < 1.

(1.7)
The three most important special cases of (1.7) are

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

= (−q; q2)2
∞
(q2; q2)2

∞
,

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

We also define

χ(q) = (−q; q2)∞.

The modular equation of degree n is an equation relating α and β that is
induced by

n
2F1

(
1
2 ,
1
2 ; 1; (1− α)

)

2F1
(
1
2 ,
1
2 ; 1;α

) =
2F1

(
1
2 ,
1
2 ; 1; (1− β)

)

2F1
(
1
2 ,
1
2 ; 1; β

) ,

where

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k
(c)kk!

xn,

with

(a)k = a(a+ 1)(a+ 2)...(a+ k − 1).

2. Identities for the Functions S(q) and T (q)

Let

fn := f (−qn),
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Then from Entries 24 and 25 [2, pp.39-40], it is easy to see that

ϕ(q) =
f52
f 21f

2
4

, ϕ(−q) = f21
f2
, ψ(q) =

f22
f1
,

ψ(−q) = f1f4

f2
, and χ(q) =

f22
f1f4

. (2.1)

Theorem 2.1. We have

(i) T 2(q4) + 2qS2(q4) =
f52

f21 f
2
4f8

, (2.2)

and

(ii) T 2(q4)− 2qS2(q4) = f 21
f2f8

. (2.3)

Proof. From Entry 25(i) and (ii) of Chapter 16 of Ramanujan’s second notebook
[13] [2,p. 40], we have

ϕ(q) + ϕ(−q) = 2ϕ(q4), (2.4)

and

ϕ(q)− ϕ(−q) = 4qψ(q8). (2.5)

Adding (2.4) and (2.5), and then employing (2.1) in the resulting identity and
after dividing throughout by f8, we obtain (2.2). Subtracting (2.5) from (2.4)
and then employing (2.1) in the resulting identity and after dividing throughout
by f8, we obtain (2.3).

Theorem 2.2. We have

T2(q)T 2(q3)− 4qS2(q)S2(q3) = f 21f
2
3

f 22f
2
6

. (2.6)

Proof. From Entry 3(i) and (ii) of Chapter 19 of [2, p.223], we have

qψ(q2)ψ(q6) =
∞∑

n=0

q6n+1

1− q12n+2 −
∞∑

n=0

q6n+5

1− q12n+10

and

ϕ(q)ϕ(q3) = 1 + 2
∞∑

k=1

(
k

3

)
qk

1 + (−q)k ,
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where

(
k

3

)
the Legendre’s symbol. From the above two identities, one can

easily show that

4qψ(q2)ψ(q6) = ϕ(q)ϕ(q3)− ϕ(−q)ϕ(−q3).

Now employing (2.1) in the above identity and then dividing throughout by
f2f6, we obtain (2.6).

Theorem 2.3. We have

S4(q)T 4(q3)− qT 4(q)S4(q3) = f1f3

f2f6
. (2.7)

Proof. Let β be of degree 3 over α. Then from Entry 5(xiii) of Chapter 19 [2,
p. 231], we have

(α)1/2 − (β)1/2 = 2(αβ)1/8[1− (αβ)1/4].

Employing Entry 5(ii) of Chapter 19 [2, p. 230] in the right side of the above
identity, we deduce

(α)1/2 − (β)1/2 = 2(αβ)1/8[(1− α)(1− β)]1/4.

Now using Entry 10 (i),(ii) and Entry 11 (i) and (ii) of Chapter 17 of [2,
pp.122-123], in the above identity, we deduce

ψ4(q2)

ψ4(q)
− qψ

4(q6)

ψ4(q3)
= 2

ϕ(−q)ϕ(−q3)ψ(q2)ψ(q6)
ϕ(q)ϕ(q3)ψ(q)ψ(q3)

. (2.8)

Using (1.5) and (1.6) in the left side of (2.7), we see that

S4(q)T4(q3)− qT 4(q)S4(q3)

=
f44 f

8
6

f42f
4
3 f

4
12

− q f
8
2 f

4
12

f41 f
4
4 f

4
6

=
f82 f

8
6

(f1f3f4f12)4

[
ψ4(q2)

ψ4(q)
− qψ

4(q6)

ψ4(q3)

]

=
f1f3

f2f6
.

where, we have used (2.8). This completes the proof.
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Theorem 2.4. We have

S2(q)T 2(q5)− qS2(q5)T 2(q) = f1f5

f2f10
. (2.9)

Proof. From Entry 10(v) of Chapter 19 of Ramanujan notebook [2, p. 262], we
have

ψ2(q)− qψ2(q5) = f1f5 (2.10)

From [2. p. 276, eq.(12.32)], we have

ϕ2(−q10)
ϕ2(−q2) − q

ψ2(−q5)
ψ2(−q) = 1− q

ψ2(q5)

ψ2(q)
.

Using (2.10) in the right side of the above identity, we obtain

ϕ2(−q10)
ϕ2(−q2) − q

ψ2(−q5)
ψ2(−q) =

f1f
3
5

f32 f10
.

Multiplying throughout by
f22f

2
10

ϕ2(−q10)ψ2(−q5)
, we obtain

f22f
2
10

ϕ2(−q2)ψ2(−q5) − q
f210f

2
2

ϕ2(−q10)ψ2(−q) =
f1f5

f2f10
.

Now using easily deducible identity T (q) = f2
ϕ(−q) and S(q) =

f2
ϕ(−q2) in the

above equation, we obtain the required result.

Theorem 2.5. We have

T (q)T(q7)− 2qS(q)S(q7) = 2f
2
1 f

2
4 f

2
7 f

2
28

f42 f
4
14

. (2.11)

Proof. From Entry 19 (i) of Chapter 19 [2, p. 314], we have

1− (αβ)1/8 = [(1− α)(1− β)]1/8, (2.12)

where β has degree 7 over α. Also, from Entry 10 (iii) and Entry (ii) of Chapter
17 [2, pp. 122-123], we deduce that

√
2q1/8

ψ(−q)
ϕ(−q2) = (α)

1/8.

Hence, if β has degree 7 over α, then

2q
ψ(−q)ψ(−q7)
ϕ(−q2)ϕ(−q14) = (αβ)

1/8.
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From Entry 10 (i) and (iii) of the Chapter 17 [2, p. 122], it follows that

ϕ(−q)ϕ(−q7)
ϕ(−q2)ϕ(−q14) = [(1− α)(1− β)]

1/8.

From (2.12) and above two identities, we deduce that

1− 2q ψ(−q)ψ(−q
7)

ϕ(−q2)ϕ(−q14) =
ϕ(−q)ϕ(−q7)
ϕ(−q2)ϕ(−q14) ,

which can be rewritten as

f2f14

ψ(−q)ψ(−q7) − 2q
f2f14

ϕ(−q2)ϕ(−q14) =
f21f

2
4f

2
7 f

2
28

f 42f
4
14

.

Now using the fact that T (q) = f2
ψ(−q) and S(q) =

f2
ϕ(−q2)

, we obtain the

required result.

Theorem 2.6. We have

(i) S(q)T (q9)− qT (q)S(q9) = f31f6f
3
9

f32 f3f
3
18

,

and

(ii) S(q)T 2(q) + S(q2)T 2(q9) = 2
f1f

3
12f36

f6f9f18
.

Proof. Part (i) follows from the following identities found in Entry 4 (ii) [2, p.
358] and Entry 2(ii) [2, p. 349] of Chapter 20, respectively:

ϕ(−q2)
ϕ(−q18) +

ψ(q)

qψ(q9)
= 3 +

ψ(−q)
qψ(−q9) ,

and

ψ(q)− 3qψ(q9) = ϕ(−q)
χ(−q3) .

Part (ii) follows from the following identities found in Entry 4(i) [2, p. 358]
and Entry 1(ii) [2, p. 345] of Chapter 20 [2], respectively:

ϕ(−q18)
ϕ(−q2) + q

(
ψ(q9)

ψ(q)
− ψ(−q

9)

ψ(−q)

)
= 1,

and

2q
χ(−q3)
χ3(−q9) = 1−

ϕ(−q)
ϕ(−q9) .
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Theorem 2.7. We have

(i) T (q)T (q15)+2q2S(q)S(q15) =
f56 f

5
10

f1f
2
3f

2
5f15f

2
12f

2
20

,

and

(ii) T (q3)T (q5)+2qS(q3)S(q5) =
f56 f

5
10

f33 f
3
5f

2
12f

2
20

.

Proof. Part (i) follows from the following identity found in Entry 9 (iii) of
Chapter 20 [2, p. 377]:

ϕ(−q2)ϕ(−q30) + 2q2ψ(q)ψ(q15) = ϕ(q3)ϕ(q5).

Part (ii) follows from the following identity found in Entry 9 (ii) of Chapter
20 [2, p. 377]:

ϕ(−q6)ϕ(−q10) + 2qψ(q3)ψ(q5) = ϕ(q)ϕ(q15).

3. Application to the Theory of Partition

The identities obtained in Section 2 have applications to the theory of parti-
tions. In this section, we present partition interpretations of some of the results
obtained in previous section. First, we recall definitions of a colored partitions
and the required generating function.

Definition 3.1. Partitions of a positive integer into parts with colors are colored
partitions.

For example, if 1 is allowed to have 2 colors, then all the (colored) partitions
of 2 are 2, 1r + 1r, 1g + 1g and 1r + 1g, where we use the indices r (red) and g
(green) to distinguish the two colors of 1. An important fact is that

1

(qa; qb)k∞

is the generating function for the number of partitions of n where all the parts
are congruent to a(mod b) and have k colors.

For simplicity, in this section, we adopt the following standard notations:

(a1, a2, ..., an; q)∞ :=
∞∏

j=1

(aj ; q)∞
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and
(qr±; qs)∞ := (q

r, qs−r; qs)∞

where r and s are positive integers with r < s.

Theorem 3.1. Let P1(n) denote the number of partitions of n into parts con-
gruent to ±2,±4,±6, (mod16), with three colors. Let P2(n) denote the number
of partitions of n into parts congruent to ±2,±4,±6, 8(mod16) and parts congru-
ent to ±2,±6, (mod16) with three colors, parts congruent to 8(mod16) with four
colors. And let P3(n) denote the number of partition of n into parts congruent
to ±1,±3,±5,±7, 8(mod16) with two colors. Then

P1(n) + 2P2(n− 1) = P3(n).

Proof. By the definitions of S(q) and T (q), (2.2) is equivalent to

1

(q2±, q2±, q2±, q4±, q4±, q4±, q6±, q6±, q6±; q16)∞

+2q
1

(q2±, q2±, q2±, q4±, q6±, q6±, q6±, q8, q8, q8, q8; q16)∞

=
1

(q1±, q1±, q3±, q3±, q5±, q5±, q7±, q7±, q8, q8; q16)∞
.

One can easily see that the three quotients of (3.1) represents the generating
function for P1(n), P2(n) and P3(n) respectively. Hence (3.1) is equivalent to

∞∑

n=0

P1(n)q
n + 2q

∞∑

n=0

P2(n)q
n =

∞∑

n=0

P3(n)q
n.

where we set P1(0) = P2(0) = P3(0) = 1. Equating the coefficients on both sides
yields the desired result.

Example 3.1. The following table verifies the case n = 4 in Theorem 3.1.

P1(4) = 9 P2(3) = 0 P3(4) = 9

2r + 2r 1r + 1r + 1r + 1r
2r + 2w 1r + 1r + 1r + 1w
2r + 2g 1r + 1r + 1w + 1w
2w + 2w 1r + 1w + 1w + 1w
2w + 2g 1w + 1w + 1w + 1w
2g + 2g 3r + 1r
4r 3r + 1w
4w 3w + 1r
4g 3w + 1w
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Theorem 3.2. Let P1(n) denote the number of partitions of n into parts not
congruent to 8(mod16), and parts congruent to ±1,±3,±5,±7(mod16) with 2
colors, parts congruent to ±4(mod16) with 3 colors.

Let P2(n) denote the number of partitions of n and parts congruent to ±1,±3,
±5,±7(mod16) with two colors, and the parts congruent to 8(mod16) with three
colors.

Let P3(n) denote the number of partitions of n into parts congruent to
8(mod16) with two colors. Then

P1(n)− 2P2(n− 1) = P3(n).

Proof. The identity (2.3) can be rewritten as

(q8; q16)2

(q4, q12; q16)2
∞

− 2q

(q8; q16)2
∞

= (q; q2)2∞(q
2, q4, q6; q8)∞,

which is equivalent to

1

(q1±, q1±, q2±, q3±, q3±, q4±, q4±, q4±, q5±, q5±, q6±, q7±, q7±, q16)∞

− 2q

(q1±, q1±, q2±, q3±, q3±, q4±, q5±, q5±, q6±, q7±, q7±, q8, q8, q8; q16)∞

=
1

(q8, q8; q16)∞
.

Observe that the left and right side of above represent the generating functions
for P1(n)− 2P2(n− 1) and P3(3), respectively. Hence

P1(n)− 2P2(n− 1) = P3(n) n > 1.

Example 3.2. The following table verifies the case n = 5 in Theorem 3.2.
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P1(5) = 28 P2(4) = 14 P3(5) = 0

1r + 1r + 1r + 1r + 1r 1r + 1r + 1r + 1r
1r + 1r + 1r + 1g + 1g 1r + 1r + 1r + 1g
1r + 1r + 1r + 1g + 1g 1r + 1r + 1g + 1g
1r + 1r + 1g + 1g + 1g 1r + 1g + 1g + 1g
1r + 1g + 1g + 1g + 1g 1g + 1g + 1g + 1g
1g + 1g + 1g + 1g + 1g 2 + 1r + 1r
2 + 1r + 1r + 1r 2 + 1r + 1g
2 + 1r + 1r + 1g 2 + 1g + 1g
2 + 1r + 1g + 1g 2 + 2

2 + 1g + 1g + 1g 3r + 1r
2 + 2 + 1r 3r + 1g
2 + 2+ 1g 3g + 1r
3r + 1r + 1r 3g + 1g
3r + 1r + 1g 4

3r + 1g + 1g
3g + 1r + 1r
3g + 1r + 1g
3g + 1g + 1g
3r + 2

3g + 2

4r + 1r
4r + 1g
4g + 1r
4g + 1g
4w + 1r
4w + 1g
5r
5g

Theorem 3.3. (i) Let P1(n) denote the number of partitions of n into parts
congruent to ±1,±3,±5(mod12) with parts congruent to ±1,±5(mod12) having
four colors, and with partition congruent to ±3(mod12) having eight colors.
Let P2(n) denote the number of partitions of n into parts not congruent to

±4(mod12), with the parts congruent to ±1,±5(mod12) having two colors, parts
congruent to ±2,±3(mod12) having four colors and parts congruent to 6(mod12)
having eight colors.

Let P3(n) denote the number of partitions of n into parts congruent to
±2, 6(mod12), with parts congruent to ±2(mod12) having two colors and parts
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congruent to 6(mod12) having four colors. Then

P1(n)− 4P2(n− 1) = P3(n)

(ii) Let P1(n) denote the number of partitions of n into parts not congruent to
±4, 6(mod12), with the parts congruent to ±2(mod12) having eight colors and
parts congruent to ±3(mod12) having six colors.

Let P2(n) denote the number of partitions of n in to parts congruent to
±1,±3,±5(mod12) with five colors. Let P3(n) denote the number of partitions
of n into parts congruent to ±2(mod12) with four colors. Then

P1(n)− P2(n− 1) = P3(n).

(iii) Let P1(n) denote the number of partitions of n into parts not congruent
to ±4,±8, 10(mod20) with parts congruent to ±2,±5,±6(mod20) having four
colors. Let P2(n) denote the number of partitions of n into parts not congruent to
±2,±8(mod20) with parts congruent to ±1,±3,±4,±6,±7,±9(mod20) having 3
colors, and parts congruent to ±5(mod20) having four colors and parts congruent
to 10(mod20) having two colors.

Let P3(n) denote the number of partitions of n into parts congruent to
2(mod4) with two colors. Then

P1(n)− P2(n− 1) = P3(n).

(iv) Let P1(n) denote the number of partitions of n into parts congruent to
±1,±3,±5, 7(mod14) with parts±1,±3,±5(mod14) having three colors and parts
congruent to 7(mod14) has 6 colors. Let P2(n) denote the number of partitions
of n into parts not congruent to ±4,±8,±12(mod28) with parts congruent to
±1,±2,±3,±5,±6,±9,±10,±11,±13(mod18) having two colors, parts congru-
ent to ±7(mod28) having four colors, and parts congruent to 14(mod28) having 6
colors. Let P3(n) denote the number of partitions of n into partitions congruent
to ±2,±6,±10, 14(mod28), with parts congruent to ±2,±6,±10(mod28) having
three colors and parts congruent to 14(mod28) having 6 colors. Then

P1(n)− 2P2(n− 1) = P3(n).

Proof. As the pattern of proof of this theorem is identical with our proof of
Theorem 3.1 and 3.2. We just give only the references of the required identities.

To prove (i), we employ the identity (2.6).

To prove (ii), we employ the identity (2.7).
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To prove (iii), we employ the identity (2.9).

To prove (iv), we employ the identity (2.11).
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