A SIMPLE PROOF OF TRIPLE PRODUCT IDENTITY OF JACOBI

P.S. Guruprasad and Pradeep N.*

Department of Studies in Mathematics
University of Mysore, Manasa Gangotri, Mysore-570006, India
*G. S. S. S. Institute of Engineering and Technology for Women
K.R.S. Road, Metagalli, Mysore-570016, India

E-mails: guruprasadps@rediffmail.com; pradeep_bharadwaj83@rediffmail.com
(Received: February 06, 2007)
Dedicated to Professor G.E. Andrews on his seventieth birthday
Abstract: In this note, we give a simple proof of Jacobi's triple product identity using q-binomial theorem.
Keywords and Phrases: q-binomial theorem, q-series, triple product identity 2000 AMS Subject Classification: 33D15

1. Introduction

Jacobi triple product identity states that

$$
\begin{equation*}
\sum_{n=1}^{\infty} q^{\frac{n(n+1)}{2}} z^{n}=(q)_{\infty}(-z q)_{\infty}(-1 / z)_{\infty}, \quad z \neq 0, \quad|q|<1 \tag{1.1}
\end{equation*}
$$

Andrews [1] gave a proof of (1.1) using two identities of Euler. Combinatorial proofs of Jacobi's triple identity were given by Wright [7], Cheema [2] and Sudler [6]. We can also find a proof of (1.1) in [3]. Hirschhorn [4,5] has proved Jacobi's two-square and four-square theorems using Jacobi's triple product identity. The main purpose of this note is to give a simple proof of (1.1) using only q-binomial theorem:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a)_{n}}{q_{n}} t^{n}=\frac{(a t)_{\infty}}{(t)_{\infty}}, \quad|t|<1, \quad|q|<1 \tag{1.2}
\end{equation*}
$$

Changing a to $a / b, t$ to $b t$, and letting $b \rightarrow 0$ in (1.2), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n} a^{n} q^{\frac{n(n-1)}{2}}}{(q)_{n}} t^{n}=(a t)_{\infty}, \quad|q|<1 \tag{1.3}
\end{equation*}
$$

Putting $a=-1$ in the above identity, we deduce

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}}}{(q)_{n}} t^{n}=(-t)_{\infty}, \quad|q|<1 \tag{1.4}
\end{equation*}
$$

2. Proof of Jacobi Triple Product Identity

We have

$$
\begin{aligned}
& \begin{aligned}
& \sum_{n=-m}^{\infty} \frac{q^{\frac{n(n+1)}{2}} z^{n}}{\left(q^{1+m}\right)_{n}}=\sum_{n=0}^{\infty} \frac{q^{\frac{(n-m)(n-m+1)}{2}} z^{n-m}}{\left(q^{1+m}\right)_{n-m}} \\
&=\frac{q^{\frac{m(m-1)}{2}} z^{-m}}{\left(q^{1+m}\right)_{-m}} \cdot \sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}}\left(z q^{1-m}\right)^{n}}{(q)_{n}} \\
&=\frac{q^{\frac{m(m-1)}{2}} z^{-m}}{\left(q^{1+m}\right)_{-m}} \cdot\left(-z q^{1-m}\right)_{\infty}, \text { on using }(1.3), \\
&= \frac{q^{\frac{m(m-1)}{2}} z^{-m}\left(1+z q^{1-m}\right)\left(1+z q^{1-m+1}\right) \ldots(1+z)(-z q)_{\infty}}{\left(q^{1+m}\right)_{-m}} \\
&=q^{\frac{m(m-1)}{2}}(q)_{m}(-z q)_{\infty}\left(\frac{1}{z}+q^{1-m}\right)\left(\frac{1}{z}+q^{2-m}\right) \ldots\left(\frac{1}{z}+1\right) \\
&=(q)_{m}(-z q)_{\infty}(1 / z)_{m} .
\end{aligned} .
\end{aligned}
$$

Taking the limit $m \rightarrow \infty$, we obtain (1.1).

References

[1] Andrews, G.E., A simple proof of Jacobi's triple product identity, Proceedings of American Mathematical Society 16(2) (1965), 333-334.
[2] Cheema, M.S., Vector partitions and combinatorial identities, Math. Comp. 18 (1964), 414-420.
[3] Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, Oxford University Press, Fifth Edition, 1981.
[4] Hirschhorn, M.D., A simple proof of Jacobi's two-square theorem, Amer. Math. Monthly 92 (1985), 579-580.
[5] Hirschhorn, M.D., A simple proof of Jacobi's four-square theorem, Proceedings of American Mathematical Society 101(3) (1987), 436-438.
[6] Sudler, C., Two enumerative proofs of an identity of Jacobi, Proc. Edinburgh Math. Soc. 15 (1966), 66-71.
[7] Wright, E.M., An enumerative proof of an identity of Jacobi, J. London Math. Soc. 40 (1965), 55-57.

