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Abstract: In this note, we give a simple proof of Jacobi’s triple product identity
using q-binomial theorem.
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1. Introduction

Jacobi triple product identity states that
∞∑

n=1

q
n(n+1)

2 zn = (q)∞(−zq)∞(−1/z)∞, z �= 0, |q| < 1. (1.1)

Andrews [1] gave a proof of (1.1) using two identities of Euler. Combinatorial
proofs of Jacobi’s triple identity were given by Wright [7], Cheema [2] and Sudler
[6]. We can also find a proof of (1.1) in [3]. Hirschhorn [4,5] has proved Jacobi’s
two-square and four-square theorems using Jacobi’s triple product identity. The
main purpose of this note is to give a simple proof of (1.1) using only q-binomial
theorem:

∞∑

n=0

(a)n
qn

tn =
(at)∞
(t)∞

, |t| < 1, |q| < 1. (1.2)

Changing a to a/b, t to bt, and letting b→ 0 in (1.2), we obtain

∞∑

n=0

(−1)nanq
n(n−1)

2

(q)n
tn = (at)∞, |q| < 1. (1.3)

Putting a = −1 in the above identity, we deduce

∞∑

n=0

q
n(n−1)

2

(q)n
tn = (−t)∞, |q| < 1. (1.4)
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2. Proof of Jacobi Triple Product Identity

We have

∞∑

n=−m

q
n(n+1)

2 zn

(q1+m)n
=

∞∑

n=0

q
(n−m)(n−m+1)

2 zn−m

(q1+m)n−m

=
q
m(m−1)

2 z−m

(q1+m)−m
·
∞∑

n=0

q
n(n−1)

2 (zq1−m)n

(q)n

=
q
m(m−1)

2 z−m

(q1+m)−m
· (−zq1−m)∞, on using (1.3),

=
q
m(m−1)

2 z−m(1 + zq1−m) (1 + zq1−m+1) . . . (1 + z)(−zq)∞
(q1+m)−m

= q
m(m−1)

2 (q)m (−zq)∞

(
1

z
+ q1−m

) (
1

z
+ q2−m

)
. . .

(
1

z
+ 1

)

= (q)m (−zq)∞ (1/z)m.

Taking the limit m→∞, we obtain (1.1).
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