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Abstract : In this paper, we have presented a unified theory of obtaining a novel class of bilateral
generating relations involving certain special functions by group theoretic method. In Section 2,
the method has been fully discussed and finally we have arrived at a conclusion in connection with
the unification of a class of bilateral generating functions involving some special functions which
is stated in Theorem 2.1. In Section 3, we have obtained a good number of theorems on bilateral
generating functions involving various special functions in course of application of Theorem 2.1
obtained in this investigation.

1. INTRODUCTION

Theories in connection with the unification of bilateral or trilateral generating
relations for various special functions are of greater importance in the study of
special functions. For previous works in this direction, one can see the works [[1]-
[7]] and [[8]-[14]] in connection with the unification of bilateral and mixed trilateral
generating relations. In this present article, we have discussed a group theoretic
mcthod for deriving a unified presentation of a novel class of bilateral gencrating
relations for certain special functions subject to the condition of construction of
one parameter continuous transformations group for the special functions under
consideration. Furthermore, we would like to mention that a good number of
theorems on bilateral generating relations for various special functions can be easily
obtained in course of application of our result (Theorem 2.1). In fact the main result
of our investigation is given in Section 2(Theorem 2.1).
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2. GROUP-THEORETIC DISCUSSION

We first consider a unilateral generating relation involving a particular special

(@)

function p of degree n and of parameter (« + n) as follows:

(2.1) Z an P (a+n ) W

Replacing w by wvz and then multiplying both sides of (2.1) by y“, we get

e @]

(2.2) y* Gz, wuz) = (pﬁf‘*")( ) y*z") (wo)".

n=0

We now suppose that for the above special function p( o )( x), it is possible to define

a linear partial differential operator R, which generates one parameter continuous
transformations group as follows:

0 0 0
(23) R= Al(Q?,y,Z) % + A2($7y72> a_y + A3($,y,2) a + Ao(fL',y,Z)

such that

(24) R(p™ () y*2") = pu pip ™ (2) y°7h2" 7,

where p,, is function of n, « and independent of x,y and

(2.5)  e"Rf(x.y,2) = Qz, vy, z,w)f(g(x,y, z,w), h(z,y, z,w), k(x,y, z,w))
Operating both sides of (2.2) by ¢“%, we get

(2.6) et (ya Gz, woz) > = e“R<Z an (PO (1) 42" (wu)")

Now the left number of (2.6), with the help of (2.5),becomes

(2.7) Qz,y, z,w)(h(z,y, z,w))aG(g(aﬁ, y, z,w), vwk(z,y, z, w))

The right number of (2.6), with the help of(2.4), becomes

o0 oo wm / B
Z Z a'nW Pn Pn+1l - - - Pntm—1 pﬁts) (x)ya mZner(wU)n'
n=0 m=0 '

v n
w at+n—m a—m _n, n—m
(28) - Z Z an—mﬁ Pn—m Pn—m+1 -+« Pn—1 ng * )( ) Y v :

n=0 m=0
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Now equating (2.7) and (2.8) and then putting y = z = 1, we get
Qa, 1, Lw)(h(x, 1,1, w)*G(g(x, 1, 1,w), vwk(xz, 1,1, w) Z w" o, (x, v)

where
n

on(2, U) = Z H Pi pnaer (z

m—O

Thus we arrive at the following theorem.

Theorem 2.1. If

Z an pOT (x

n=>0
then

Qz, 1, 1, w)(h(z, 1,1,w))*CG(g(x, 1, 1,w), vwk(z, 1, 1,w)) Zw on(z, v)

where

O_YL(:E7 ’U) _ H 0i P a+m

m:()

3. APPLICATIONS

We now proceed to give a good number of applications of our result stated in
Theorem 2.1.

3.1. Application-1. At first we take

p;a+") (x) = fT(L5+")(;L') with o = (.

We now consider the following partial differential operator R :

0 0 0
R =1 - .2 _9 N
e ZO:L dy Sy 0z o2
such that
(3.1) R(f(@) y'2") = =(n+1) fi31" (2) =12
and
(3.2)

wR —1 - -1 Y “
z) = exp(—w: z 1+ . .
e f(w,y,2) = exp(—wry >f(x< wy z>,(Hwy_lz)a(lﬂ,y_lz)g)
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Comparing (2.4), (2.5) with (3.1), (3.2), we get
Pn = _<I’L + 1)7 Q(‘Lv Y, =, ’LU) = e’wp(_'w‘/];y_lzx g(‘Lv Y, =, LU) = ‘L<1 + lwy_lz)a
Yy z
h(x,y, 2 = ——— k(z,y,2 =—
(/ana ,'ZU) (1 _'_,wy_lz)a (Taya 7,’11}) (1 +wy_lz)2
So by the application of our Theorem 2.1, we get the following theorem on bilateral

generating relations involving modified Laguerre polynomials.

Theorem 3.1. If

(o¢]

(3.3) G(z, w) = Z ay P () w"

n=0
then

(3.4) exp(wz)(1 —w)ﬁa<x(1 —w), vw(l —w)” ) Zw onla, v)

where

- n m m
O-n($7 U) — Z A, < m ) fr(zﬂ+ )(Z’)U
m=>0

3.2. Application-2. Now let us take

pgboﬁ»n)

Then we consider the following partial differential operator R, where

() = La, b, (m+n), n(x) with a = m.

R=bry 'z — 0 + bz 2 + 20y 122 2 —azy 1z

O oy 0z
such that
(3.5) R(La, b, (m+n), n(z) y"2") = (n+1) La, s, (m+n), n1(7) ym_lzm_l
and
(3.6)
—awxy 'z

e f(x,y. 2) = eﬂ:p(

Comparing (2.4), (2.5) with (3.5), (3.6), we get

—awzy 'z

1—bwy 1z

oo — (4 1), Qg zw) — ea:p( ) o,y zw) — a(1— buwy~'2) ",

1—bwy 1z
Wy, z,w) = y(1 —bwy™2)7" k(z,y, 2,w) = 2(1 = bwy™'2) ™

So by the application of our Theorem 2.1, we get the following result on bilateral
generating relations involving modified Laguerre polynomials.

>f (x(lbwy1z)1,y(1bwy1z)1,z(1bwy1z -
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Theorem 3.2. If

(37) l' 'LU Z a, L a, b, (m+n), ( )

then

(3.8) e”cp(l_mzw (1 — bw)mG(x(l —bw) L vw(l — bw)” > Zw on(x, v)
— bw

where

" n
O'n(l‘, U) = ap < ) La7 b, (m+p), n($)vp
0

p
p:

Remark. On specializing the parameters as a = b = 1 and m = 1 + « in our
Theorem 3.2 we get the following result on Laguerre polynomials.

Theorem 3.3. If

(3.9) G(z, w) Z a, L (g

then

(3.10) exp(s 1 —w)” (”“)G( (1 w)l,vw(l—w)2> =3 W oulz, v),

—w

where

which is found derived in [16].

3.3. Application-3. Now we take
Pl (z) = COYY () with o = \.

From [15], we see that

0 0
R= (2" - 1)y 'z — + 202 — + 3y '2?

ox oy 9z
such that
(3.11) R(CO* (z) y2") = (n+ 1) OO () 12
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and
(3.12)
3 3
wR Ty —wsz Yy y'z
€ f  ,Y,%2) = f< ) ) )
( ) (w22 — 2wxyz + y2)% (w2? = 2wzyz + y?) " (w2? — 2wayz + yz)%

So by comparing (3.11), (3.12) with (2.4)), (2.5), we get

TY — Wz

p’IL = (n+1)7 Q(x7y7z7w) = 17 g(x7y7z7w) =

10

(wz? = 2wzyz + y?)2

v k.. %)
¢ Y x’ y7 Z7 w = *
(w2 = 2wzyz + y?) (wz? — 2wayz + y2)2

Then by the application of our Theorem 2.1, we get the following result on bilateral
generating relations involving Gegenbauer polynomials.

Theorem 3.4. [If

Y’z

hz,y,z,w) =

(3.13) G(z, w) = Z ap COT () "
n=>0
then

(3.14) (w—2wx+ 1)_’\G( —— , el > = Z w” o,(x, v),

(w—2wz+1)z (w— 2wz +1)3

where

n

oulw, V) =Y <7ZL) COFm) (),

m=0
3.4. Application-4. Now we take
plet(z) = SF(—n, i+ n;x).

Then considering the following partial differential operator R :

0 0 0
1 -1 1.2 B -1
R=(1—-x)zy 2 o +z 3y +2y 2 P Bxy™ 2

such that
(3.15) R(oFi(—n,B;a+n;x) y*2") = 2n+a) o Fi(—(n+1), B;a+n;x) y* Lz

and
cBf(zy,2) = (L—wy '2){1 - (1 —2)wy 12} 7

x Y “
(3.16) X f<1 — (1 —2)wy 12" (1 —wy=1z) (1 - wy‘12)2>'
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Comparing (3.15), (3.16) with (2.4), (2.5), we get

(1 —wy12)° T
n = 2 Q 1 2 ) = 2 _=
Y z
h/ X, = - k M z ) == —

So by the application of our Theorem 2.1, we at once get the following result on
bilateral generating relations involving Hypergeometric polynomials.

Theorem 3.5. If

(3.17) Gz, w) = Z an 21 (—n, B+ nyz) w”
n=0
then
(3.18)
. _ x wv - n
(1= w)™ {1 = (1 - 2jw) UG((1 —w(l—x) (1- w)2> B ;u 7% )
where

- n+o+k—1
Un(xa ’U) = ag < ,LZ—’]_{,(_)V’_Z_ 1 ) 2F1(—n,5;a+k;z)vk.
k=0

3.5. Application-5. Finally we take
Pt () = Y (s k),

k is a non-zero positive integer. Then from [16], we see that

R=mxy 'z d_asv +z % + (k4 1)y~ 'z % + (1 =2y 'z
such that
(3.19) RV, (s k) y*2") = k(n + 1) Y (o k)y* 2"
and

e .y, 2) = (1= kwy™2) 7% eapl afl - (1= kwy™'2) 7€} |
(3.20) x f <”c(1 - kwyilz)*%,y(l - k‘wy*lz)f%, z(1— kwylz)&k‘i)

Comparing (3.19), (3.20) with (2.4), (2.5), we get
pn =k +1), Qx,y,2,w) = (1 = kwy™'2) 7 eaple{l — (1 = hwy™'2) 71},

g(x,y, z,w) = z(1 — kwyilz)*%, hz,y, z,w) =y(1 — kwyilz)*%,
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k+1

k(z,y,2,w) = 2(1 — kwy '2) % .
So by the application of our Theorem 2.1, we get the following result on bilateral

generating relations involving Konhauser biorthogonal polynomials suggested by
the laguerre polynomials.

Theorem 3.6. If

(3.21) Gz, w) = Z a, Y, (x; k) w”
n=0

then

(3.22)

(A+o) 1

(1—kw)™ * expla{l—(1—kw) E}}G(I(l—kw)_%,wv(l—kw)_%):Zw”Jn(x,v)7

where

m

o )= () R

m=0

which is found derived in [16].

Remark. On putting £ = 1 in our Theorem 3.6 we get the Theorem 3.3.

4. CONCLUSION

From the above discussion, it is clear that one may apply Theorem 2.1 in the case
of other polynomials and functions existing in the field of special functions subject
to the condition of construction of one parameter continuous transformations group
for the said special function(s). Furthermore, the importance of the above theorems
(3.1-3.6) lies in the fact that whenever one knows a unilateral generating function
of the form (3.3,3.7 etc.) then the corresponding bilateral generating function can
at once be written down from ( 3.4,3.8 etc.). So one can get a large number of
bilateral generating functions by attributing different suitable values to a, in (
3.3,3.7etc.).
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