ON AN EXAMPLE RELATED TO A CONJECTURE OF RAJENDRA BHATIA AND PETER ŠEMRL
 Kallol Paul ${ }^{1}$ and Gopal Das
 Department of Mathematics
 Jadavpur University, Calcutta-32., India
 E-mail: kalloldada@yahoo.co.in

(Received: April 02, 2008)
Dedicated to Professor G.E. Andrews on his seventieth birthday

Abstract

Suppose A and B are two linear operators on C^{n} with a non-Euclidean norm. In a paper [1] on orthogonality of matrices Bhatia and \check{S} emrl conjectures that $\|A\| \leq\|A+\lambda B\|$ for all $\lambda \in C$ iff there exists a unit vector $\tilde{z} \in C^{n}$ such that $\|A \tilde{z}\|=\|A\|$ and $\|A \tilde{z}\| \leq\|(A+\lambda B) \tilde{z}\|$ for all $\lambda \in C$. The conjecture was negated by Li [2]. We here give an easy example to negate a slightly modified form of the the conjecture $\|A\|<\|A+\lambda B\|$ for all non-zero scalar $\lambda \in C$ iff there exists a unit vector $\tilde{z} \in C^{n}$ such that $\|A \tilde{z}\|=\|A\|$ and $\|A \tilde{z}\|<\|(A+\lambda B) \tilde{z}\|$ for all non-zero scalar $\lambda \in C$.

Keywords and Phrases: Operator norm, operator inequality
2000 AMS Subject Classification: 47A30,47A63

1. Introduction

Clearly one part of the modified form of the conjecture is always true i.e., if there exists a unit vector $\tilde{z} \in C^{n}$ such that $\|A \tilde{z}\|=\|A\|$ and $\|A \tilde{z}\|<\|(A+$ $\lambda B) \tilde{z} \|$ for all non-zero scalar $\lambda \in C$ then $\|A\|<\|A+\lambda B\|$ for all non-zero scalar $\lambda \in C$. In fact this part is true for the original conjecture. We give an example to show that the other part is not always true.

Consider C^{n} with the norm $\|\cdot\|_{\infty}$ defined as $\|\tilde{z}\|_{\infty}=\max \left\{\left|z_{1}\right|,\left|z_{2}\right| \ldots\left|z_{n}\right|\right\}$, where

$$
\tilde{z}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\cdot \\
z_{n}
\end{array}\right) \in C^{n}
$$

Let us consider the linear operator

$$
A=\left(\begin{array}{ccccccc}
1 & 1 & . & . & . & 1 & 1 \\
1 & 1 & . & . & . & 1 & 0 \\
1 & 1 & . & . & . & 0 & 0 \\
. & . & . & . & . & . & . \\
1 & 1 & 0 & . & . & 0 & 0 \\
n^{2} & 0 & . & . & . & 0 & 0
\end{array}\right)
$$

i.e. $A: C^{n} \rightarrow C^{n}$ is given by

$$
A \tilde{z}=(\overbrace{z_{1}+z_{2}+\ldots+z_{n}}, \overbrace{z_{1}+z_{2}+\ldots+z_{n-1}}, \ldots, \overbrace{z_{1}+z_{2}}, \overbrace{n^{2} z_{1}})
$$

Then for all $\lambda \in C$, we have
$(A+\lambda I) \tilde{z}=\overbrace{\left(z_{1}(1+\lambda)+z_{2}+. .+z_{n}\right.}, \overbrace{z_{1}+z_{2}(1+\lambda)+. .+z_{n-1}}, . ., \overbrace{z_{1}+z_{2}+\lambda z_{n-1}}, \overbrace{n^{2} z_{1}+\lambda z_{n}})$
and so

$$
\begin{aligned}
& \|A+\lambda I\|=\sup _{\|\tilde{z}\|_{\infty}=1}\|(A+\lambda I) \tilde{z}\|=\sup _{\|\tilde{z}\|_{\infty}=1} \max \left\{\left|z_{1}(1+\lambda)+z_{2}+\ldots+z_{n}\right|\right. \\
& \left.\quad\left|z_{1}+z_{2}(1+\lambda)+\ldots+z_{n-1}\right|, \ldots\left|z_{1}+z_{2}+\lambda z_{n-1}\right|,\left|n^{2} z_{1}+\lambda z_{n}\right|\right\}=n^{2}+|\lambda|,
\end{aligned}
$$

which is attained at $\tilde{z}=\left(e^{i \phi}, z_{2}, z_{3}, \ldots, z_{n-1}, e^{-i \theta}\right)$, where $\lambda=|\lambda| e^{i \theta}$ and $\left|z_{2}\right| \leq$ $1,\left|z_{3}\right| \leq 1, \ldots\left|z_{n-1}\right| \leq 1$. Thus $\|A\|<\|A+\lambda I\|$ for all $0 \neq \lambda \in C$.

We now show that there exists no such vector $\tilde{z} \in C^{n}$ such that $\|A \tilde{z}\|_{\infty}=$ $\|A\|$ and $\|A \tilde{z}\|_{\infty}<\|(A+\lambda I) \tilde{z}\|_{\infty}$ for all $0 \neq \lambda \in C$. Clearly $\|A\|$ is attained at those unit vectors \tilde{z} for which $\tilde{z}=\left(e^{i \phi}, z_{2}, \ldots z_{n}\right)$ where $\left|z_{2}\right| \leq 1,\left|z_{3}\right| \leq$ $1, \ldots\left|z_{n}\right| \leq 1$. If possible suppose there exists $\tilde{z}=\left(e^{i \phi}, z_{2}, \ldots z_{n-1},\left|z_{n}\right| e^{i \theta}\right)$ where $\left|z_{2}\right| \leq 1,\left|z_{3}\right| \leq 1, \ldots\left|z_{n}\right| \leq 1$ such that $\|A \tilde{z}\|_{\infty}<\|(A+\lambda I) \tilde{z}\|_{\infty}$ for all $0 \neq \lambda \in C$.

Choose $\lambda_{0}=e^{-i(\theta-\phi+\pi)}$. Then $\left\|\left(A+\lambda_{0} I\right) \tilde{z}\right\|_{\infty}=n^{2}-\left|z_{n}\right| \leq\|A \tilde{z}\|_{\infty}=n^{2}$ which is a contradiction.

This example negates the above mentioned conjecture which states that
Suppose A and B are two linear operators on C^{n} with a non-Euclidean norm. Then $\|A\|<\|A+\lambda I\|$ for all non-zero $\lambda \in C$ iff there exists a unit vector $\tilde{z} \in C^{n}$ such that $\|A \tilde{z}\|_{\infty}=\|A\|$ and $\|A \tilde{z}\|_{\infty}<\|(A+\lambda I) \tilde{z}\|_{\infty}$ for all non-zero $\lambda \in C$.

References

[1] Bhatia, R. and Šemrl, P., Orthogonality of matrices and some distance problems, Linear Algebra and Appl. 287(1999), 77-85.
[2] Li, C.K. and Schneider, H., Orthogonality of matrices, Linear Algebra and Appl. 47(2002), 115-122.

