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Abstract: Ramanujan develops, in Chapter 16 of his second notebook, the the-
ory of theta-function and recorded several identities without proofs. All these
have been proved by Adiga, Berndt, Bhargava and Watson. In this paper, we
establish several results of N-theta function which are analogous to the results in
the Entries in Chapter 16 of Ramanujan’s second notebook.
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1. Introduction

Ramanujan develops, in Chapter 16 of his second notebook [3], the theory
of theta-function and his theta-function is defined by

f(a, b) =
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1.

Following Ramanujan, we define

ϕ(q) := f (q, q) =
∞∑

n=−∞

qn
2

(1.1)

ψ(q) := f(q, q3) =
∞∑

n=0

q
n(n+1)

2 (1.2)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2 . (1.3)

Following Ramanujan, we define a new N- Theta function by

fN(a, b) =
∞∑

k=−∞

a
k
N (kN+1)

2 b
k
N (kN−1)

2 , |ab| < 1. (1.4)
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If we set a = qe2iz, b = qe−2iz and q = eπiτ , where z is complex and
Im(τ) > 0 in (1.4), then we deduce that

ϑN,3(z, τ) =
∞∑

k=−∞

qk
2N
e2ik

Nz, (1.5)

where ϑN,3(z, τ) is similar to one of the classical theta-functions in its standard
notation [4]. Now we obtain special cases of fN (a, b) which are similar to the
special cases (1.1)-(1.3) of Ramanujan’s theta-function f(a, b).

ϕN(q) := fN (q, q) =
∞∑

k=−∞

qk
2N

(1.6)

ψN (q) =
∞∑

k=0

q
1
2
(k+ 1

2
)2N (1.7)

and

fN (−q) := fN(−q,−q
2) =

∞∑

k=−∞

(−1)kq
k
N (3kN−1)

2 . (1.8)

Remark 1.1 Putting N = 1 in (1.4), then we obtain 1-Theta function which is
same as Ramanujan’s f(a, b).

2. Some Results Similar to Ramanujan’s Theta-functions

In this section, we establish several results which are similar to the results
in the Entries in Chapter 16 of his second notebook [3].

Theorem 2.1. We have

fN (a, b) = fN (b, a) if N is odd (2.1)

Proof. Replacing k by −k in (1.4), we obtained the required result.

Theorem 2.2. We have

ϕN (q) + ϕN (−q) = 2ϕN(q
4N ). (2.2)
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Proof. Using (1.5), we find that

ϕN(q) + ϕN(−q) =
∞∑

k=−∞

qk
2N
+

∞∑

k=−∞

(−1)kqk
2N

=
∞∑

k=−∞

qk
2N
(1 + (−1)k)

= 2
∞∑

k=−∞

q(2k)
2N

= 2ϕN (q
4N ).

Corollary 2.1. We have

ϕ(q) + ϕ(−q) = 2ϕ(q4). (2.3)

Proof. Putting N = 1 in (2.2), we obtain (2.3)

Remark 2.1. The identity (2.3) is same as the identity in Entry 25(i) of Chapter
16 of Ramanujan’s second notebook [3].

Theorem 2.3. We have

ϕN (q)− ϕN (−q) = 4ψN(q
22N+1). (2.4)

Proof. Using (1.5), we find that

ϕN(q)− ϕN(−q) =
∞∑

k=−∞

qk
2N
−

∞∑

k=−∞

(−1)kqk
2N

=
∞∑

k=−∞

qk
2N
(1− (−1)k)

= 2
∞∑

k=−∞

q(2k+1)
2N

= 4ψN (q
22N+1).

Corollary 2.2. We have

ϕ(q)− ϕ(−q) = 4qψ(q8). (2.5)
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Proof. Putting N = 1 in (2.6), we obtain the require result.

Remark 2.2. The identity (2.5) is same as the identity in Entry 25(ii) of Chapter
16 of Ramanujan’s second notebook [3].

Theorem 2.4. We have

ϕ2N(q) + ϕ
2
N (−q) = 2ϕ

2
N (q

4N ) + 8ψ2N(q
22N+1). (2.6)

Proof. Using (1.5), we find that

ϕ2N (q) + ϕ
2
N(−q) =

∞∑

m,k=−∞

qm
2N+k2N (1 + (−1)m+k)

=
∑

m,k both even

qm
2N+k2N (1 + (−1)m+k)

+
∑

m,k both odd

qm
2N+k2N (1 + (−1)m+k)

= 2ϕ2N (q
4N ) + 8ψ2N (q

22N+1).

Corollary 2.3. We have

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2). (2.7)

Proof. Putting N = 1 in (2.6), we obtain (2.7).

Remark 2.3. The identity (2.9) is same as the identity in Entry 25(vi) of Chapter
16 of Ramanujan’s second notebook [3].

Theorem 2.5. We have

ϕ2N(q)− ϕ
2
N (−q) = 8ϕN(q

4N )ψN(q
22N+1). (2.8)

Proof of (2.8) is similar to the proof of (2.6). So we omit the details.

Corollary 2.4. We have

ϕ2(q)− ϕ2(−q) = 8ϕ(q4)ψ(q8). (2.9)

Proof. Putting N = 1 in (2.8), we obtain (2.9).

Remark 2.4. The identity (2.9) is same as the identity in Entry 25(v) of Chapter
16 of Ramanujan’s second notebook [3].
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Theorem 2.6. We have

fN (a, b) + fN(−a,−b) = 2fN

(
a
22N+2N

2 b
22N−2N

2 , a
22N−2N

2 b
22N+2N

2

)
. (2.10)

Proof. Using (1.4), we deduce that

fN (a, b) + fN(−a,−b) =
∞∑

k=−∞

a
k
N (kN+1)

2 b
k
N (kN−1)

2 (1 + (−1)k)

= 2
∞∑

k=−∞

a
(2k)N ((2k)N+1)

2 b
(2k)N ((2k)N−1)

2

= 2
∞∑

k=−∞

((ab)2
2N
)
k
2N

−k
N

2 (a−1b)
(22N−2N )kN

2 (a2
2N
)k
N

= 2
∞∑

k=−∞

((ab)4
k

)
k
2N

−k
N

2 (a
22N+2N

2 b
22N−2N

2 )k
N

= 2fN

(
a
22N+2N

2 b
22N−2N

2 , a
22N−2N

2 b
22N+2N

2

)
.

Corollary 2.5. We have

f(a, b) + f(−a,−b) = 2f(a3b, ab3). (2.11)

Proof. Putting N = 1 in (2.10), we obtain (2.11).

Remark 2.5. The identity (2.11) is same as the identity in Entry 30(ii) of
Chapter 16 of Ramanujan’s second notebook [3].

3. Some Results Similar to Classical Theta-functions

The theta-function were first systematically studied by Jacobi, who obtained
their properties by purely algebraical methods. The four types of theta functions
are as follows:

ϑ1(z, q) = 2
∞∑

k=0

(−1)kq(k+
1
2
)2 sin(2k + 1)z, (3.1)

ϑ2(z, q) = 2
∞∑

k=0

q(k+
1
2
)2 cos(2k + 1)z, (3.2)

ϑ3(z, q) = 2
∞∑

k=−∞

qk
2
cos 2kz (3.3)
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and

ϑ4(z, q) =
∞∑

k=−∞

(−1)kqk
2
cos 2kz. (3.4)

In this section, we introduce generalized classical theta-functions as follows:

ϑN,1(z, q) =
∞∑

k=0

qk
2N
sin 2kNz, (3.5)

ϑN,2(z, q) =
∞∑

k=−∞

q
1
2
(k+ 1

2
)2N e2i(2k+1)

Nz, (3.6)

ϑ′N,2(z, q) =
∞∑

k=0

q
1
2
(k+ 1

2
)2N cos 2(2k + 1)Nz, (3.7)

ϑN,3(z, q) =
∞∑

k=−∞

qk
2N
e2ik

Nz, (3.8)

ϑ′N,3(z, q) =
∞∑

k=0

qk
2N
cos 2kNz, (3.9)

and

ϑN,4(z, q) =
∞∑

k=−∞

(−1)kqk
2N
e2ik

Nz. (3.10)

Theorem 3.1. We have

ϑN,3(z, q) + ϑN,4(z, q) = 2ϑN,3(2
Nz, q2

2N
). (3.11)

Proof. Using (3.8) and (3.10), we find that

ϑN,3(z, q) + ϑN,4(z, q) =
∞∑

k=−∞

qk
2N
e2ik

Nz(1 + (−1)k)

= 2
∞∑

k=−∞

(q2
2N
)k
2N
e2ik

N (2Nz)

= 2ϑN,3(2
Nz, q2

2N
).

Corollary 3.1. We have

ϑN,3(0, q) + ϑN,4(0, q) = 2ϑN,3(0, q
22N ). (3.12)

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



N-Theta Function Identities 99

Proof. Putting z = 0 in (3.11), we obtain (3.12).

Remark 3.1. The identity (3.12) is same as (2.2).

Theorem 3.2. We have

ϑN,3(z, q)− ϑN,4(z, q) =

{
4ϑN,2(z, q

22N+1) if N is even

4ϑ′N,2(z, q
22N+1) if N is odd.

(3.13)

Proof. Using (3.8) and (3.10), we find that

ϑN,3(z, q)− ϑN,4(z, q) =
∞∑

k=−∞

qk
2N
e2ik

Nz(1− (−1)k)

= 2
∞∑

k=−∞

(q2
2N+1

)
1
2
(k+ 1

2
)2N e2i(2k+1)

Nz

= 2
∞∑

k=0

(q2
2N+1

)
1
2
(k+ 1

2
)2N e2i(2k+1)

Nz

+ 2
∞∑

k=0

(q2
2N+1

)
1
2
(k+ 1

2
)2N e2i(−1)

N(2k+1)Nz

= 2
∞∑

k=0

(q2
2N+1

)
1
2
(k+ 1

2
)2N
[
e2i(2k+1)

Nz + e2i(−1)
N (2k+1)Nz

]

=






4
∞∑

k=0

(q2
2N+1

)
1
2
(k+ 1

2
)2N e2i(2k+1)

Nz if N is even

4
∞∑

k=0

(q2
2N+1

)
1
2
(k+ 1

2
)2N cos 2(2k + 1)Nz if N is odd

=

{
4ϑN,2(z, q

22N+1) if N is even

4ϑ′N,2(z, q
22N+1) if N is odd.

Corollary 3.2. We have

ϑN,3(0, q)− ϑN,4(0, q) = 4ϑN,2(0, q
22N+1). (3.14)

Proof. Putting z = 0 in (3.13), we obtain

Remark 3.2. The identity (3.14) is same as (2.4).

Theorem 3.3. We have

ϑN,3(z, q) + ϑN,3(−z, q) = 4ϑ′N,3(z, q)− 2. (3.15)
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Proof. Using (3.8), we find that

ϑN,3(z, q) + ϑN,3(−z, q) =
∞∑

k=−∞

qk
2N
(
e2ik

Nz + e−2ik
Nz
)

= 2
∞∑

k=−∞

qk
2N
cos2kNz

= 2

(

1 + 2
∞∑

k=1

qk
2N
cos2kNz

)

= 4ϑ′N,3(z, q)− 2.

Theorem 3.4. We have

ϑN,3(z, q)− ϑN,3(−z, q) = 4iϑ2N,1(z, q). (3.16)

Proof of (3.16) is samiliar to the proof of (3.15). So we omit the details.

Theorem 3.5. We have

ϑN,3(z, q) = ϑN,3(2
Nz, q2

2N
) + ϑN,2(z, q

22N+1), (3.17)

ϑN,4(z, q) = ϑN,3(2
Nz, q2

2N
)− ϑN,2(z, q

22N+1), (3.18)

ϑ2N,3(2
Nz, q2

2N
)− ϑ2N,2(z, q

22N+1) = ϑN,3(z, q)ϑN,4(z, q), (3.19)

and

ϑ2N,3(z, q)− ϑ
2
N,4(z, q) =






4ϑN,3(2
Nz, q2

2N
)ϑN,2(z, q

22N+1) if N is even

4ϑN,3(2Nz, q2
2N
)ϑ′N,2(z, q

22N+1) if N is odd.

(3.20)

Proofs of the identities (3.17)-(3.20) follows very easily from the definitions
(3.8) and (3.10). So we omit the details.
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