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1. Introduction

For α and q real or complex (|q| < 1), we define

[α]n ≡ [α; q]n = (1− α)(1− αq) . . . (1− αqn−1), n > 0, [α]0 = 1

[α]∞ ≡ [α; q]∞ =
∞∏

n=0

(1− αqn).

With the help of above notations, we define a basic hypergeometric function

rΦs

[
a1, a2, . . . , ar ; q; z
b1, b2, . . . , bs ;

]
=

∞∑

n=0

[a1]n [a2]n . . . [ar]n zn

[q]n [b1]n [b2]n . . . [bs]n
, (1.1)

valid for |z| < 1.

We also define a basic bilateral hypergeometric function

rΨr

[
a1, a2, · · · , ar ; q; z
b1, b2, · · · , br ;

]
=

∞∑

n=−∞

[a1]n [a2]n . . . [ar]n z
n

[b1]n [b2]n . . . [br]n
(1.2)

valid for |b1b2 . . . /a1a2 . . . ar| < |z| < 1.

(1.2) reduces to (1.1) if any of the denominator parameters tends to q.
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We define Dedekind Eta function

η(τ)e−πiτ/12 = [q]∞, where q = e2πiτ , Im(τ) > 0.

We shall also make use of the following Ramanujan’s 1Ψ1 summation

1Ψ1

[
a ; q; z
b ;

]
=

[b/a]∞ [az]∞ [q/az]∞ [q]∞
[q/a]∞ [b/az]∞ [b]∞ [z]∞

(1.3)

Any other notation appearing herein shall carry its usual meaning.

2. Main Results

In this section, we shall discuss our main results.

Setting a = 1
α , b = β and replacing z by −αzq1/2 in (1.3), we get

[−zq1/2]∞ [−q1/2/z]∞ [q]∞ [αβ]∞
[−αzq1/2]∞ [−β/zq1/2]∞ [αq]∞ [β]∞

=
∞∑

k=1

[1/α]k (−αzq
1/2)k

[β]k
+

∞∑

k=0

[q/β]k (−βq
−1/2)k z−k

[αq]k
(2.1)

On differentiating both sides of (2.1) with respect to z, we set after some
simplification,

[q]∞ [αβ]∞
[α]∞ [β]∞

{
[−zq1/2]∞ [−q1/2/z]∞

[−αzq1/2]∞ [−β/zq1/2]∞

}{
q1/2

1 + zq1/2
+

q3/2

1 + zq3/2
+ . . .

−

(
q1/2

z2(1 + q1/2/z)
+

q3/2

z2(1 + q3/2/z)
+ . . .

)

−

(
αq1/2

1 + αzq1/2
+

αq3/2

1 + αzq3/2
+ . . .

)

+

(
βq−1/2

z2(1 + βq−1/2/z)
+

βq1/2

z2(1 + βq1/2/z)
+

βq3/2

z2(1 + βq3/2/z)

)}

=
∞∑

k=0

(k + 1)[q/α]k(−αz)
k q(k+1)/2

[β]k+1
−

∞∑

k=0

k[q/β]k (−β)
kq−k/2 z−k−1

[α]k+1
(2.2)

Now putting z = −q−1/2 in (3.2), Bhargava and Somashekara [1] received
the following result,

[q]3
∞

[αβ]∞
[α]2

∞
[β]2

∞

=
∞∑

k=0

(k + 1)[q/α]kα
k

[β]k+1
+

∞∑

k=0

k[q/β]k β
k

[α]k+1
(2.3)
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and made use of this relation to derive several Eta-function identities.

In this paper we would like to point out that proper choice of other values of
z (2.2) can lead to several new and interesting Eta function identities. We shall
also derive several other identities from (2.3) which were possibily not noticed by
Bhargava and Somashekara [1].

For z = −q1/2 (2.2) leads to the following new relation,

(1− α)

(1− β/q)

[q]3
∞
[αβ]∞

[α]2
∞

[β]2
∞

= q
∞∑

k=0

(k + 1) [q/α]k (αq)
k

[β]k+1
+

∞∑

k=0

k [q/β]k (β/q)
k

[α]k+1
(2.4)

3. Eta-Function Identities

In this section, we shall establish certain interesting Eta-function identities.

(i) Taking α = w and β = w2q (w = e2πi/3) in (2.3), we get the following
identity

1

(1− w2)

η6(τ)

η2(3τ)
=

∞∑

k=0

(k + 1)wk

(1− w2qk+1)
+

∞∑

k=0

k w2k qk

(1−wqk)
(3.1)

(ii) Next, setting α = −w and β = −w2q in (2.3), we get,

η2(τ) η2(2τ) η2(3τ)

(1 + w2) η2(6τ)
=

∞∑

k=0

(k + 1) (−w)k

(1 +w2qk+1)
+

∞∑

k=0

k (−w2q)k

(1 + wqk)
(3.2)

(iii) Again, taking α = iq and β = −iq in (2.3), we get

1

(1− q)

η4(τ) η2(2τ)

η2(4τ)
=

∞∑

k=0

(k + 1) (1 + i) (iq)k

(1 + iqk+1)
+

∞∑

k=0

k (1− i)(−iq)k

(1− iqk+1)

(3.3)

(iv) Further, setting α = iq and β = −iq in (2.3), we get,

q−3/8 η3(τ) η3(2τ) η2(8τ)

η4(4τ)
=

∞∑

k=0

(k + 1) (iq)k

(1 + iq2k+1)
+

∞∑

k=0

k (−iq)k

(1− iq2k+1)
(3.4)

(v) setting α = β = q in (2.3), we get,

η8(2τ)

η4(τ)
=

∞∑

k=0

(k + 1) q(2k+1)/2

(1− q2k+1)
+

∞∑

k=0

k q(2k+1)/2

(1− q2k+1)
(3.5)
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Now, we shall establish Eta function identities with the help of (2.4). Re-
placing q by q2 in (2.4), we get,

(1− α)

(1− β/q2)

[q2; q2]3
∞

[αβ; q2]∞
[α; q2]2

∞
[β; q2]2

∞

= q2
∞∑

k=0

(k + 1) [q2/α; q2]k (αq
2)k

[β; q2]k+1

+
∞∑

k=0

k [q2/β; q2]k (β/q
2)k

[α; q2]k+1
(3.6)

Now, replacing β by βq in (2.4) and β by βq2 in (3.6), we get, respectively,
the following relations,

(1− α)

(1− β)

[q; q]3
∞

[αβq; q]∞
[α; q]2

∞
[βq; q]2

∞

= q
∞∑

k=0

(k + 1) [q/α; q]k (αq)
k

[βq; q]k+1
+

∞∑

k=0

k [q/β; q]k β
k

[α; q]k+1

(3.7)
and

(1− α)

(1− β)

[q2; q2]3
∞

[αβq2; q2]∞
[α; q2]2

∞
[βq2; q2]2

∞

= q2
∞∑

k=0

(k + 1) [q2/α; q2]k (αq
2)k

[βq2; q2]k+1

+
∞∑

k=0

k [1/β; q2]k β
k

[α; q2]k+1
(3.8)

(vi) If we replace α and β by wq and w2q in (3.8), we get, after some simplifi-
cation, the following interesting identity,

q−1/2(1 + q + q2)

(1− q2)

η2(τ) η2(2τ) η2(6τ)

η2(3τ)

= q2(1−w2q)
∞∑

k=0

(k + 1)(wq3)k

(1−w2q2k+3)
+(1−w/q)

∞∑

k=0

k (w2q)k

(1− wq2k+1)
, w = e2πi/3

(3.9)

(vii) Next, we put α = w and β = w2q in (3.7), we get, after some simplification,

(1−w2q)

(1− q)(1−w)

η6(τ)

η2(3τ)
= q(1−w2q)

∞∑

k=0

(k + 1)(wq)k

(1−w2qk+2)
+(1−w/q)

∞∑

k=0

k (w2q)k

(1− wqk)

(3.10)
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(viii) Again, if we take α = −w1, β = −w2q in (3.7), we get, after some simplifi-
cation,

(1 + wq)

(1− q)(1 + w)

η2(τ) η2(2τ) η2(3τ)

η2(6τ)
= q(1 + w2q)

∞∑

k=0

(k + 1)(−wq)k

(1 +w2qk+2)

+ (1 + w/q)
∞∑

k=0

k (−w2q)k

(1 +wqk)
(3.11)

(ix) Further, taking α = β = q in (3.8), we get,

q1/2 η8(2τ)

(1 + q) η4(τ)
= q3

∞∑

k=0

(k + 1)q3k

(1− q2k+3)
−

∞∑

k=0

k qk

(1− q2k+1)
(3.12)

(x) Next, if we put α = β = −q in (3.8), we get,

q−1/2 η4(τ) η4(4τ)

η4(2τ)
= q2(1−q)

∞∑

k=0

(k + 1)(−)k q3k

(1 + q3k+3)
+

(
1− q

q

) ∞∑

k=0

k (−)k qk

(1 + q2k+1)

(3.13)

(xi) Again taking α = −wq and β = −w2q in (3.8), we get,

q−1/2(1− q + q2)

(1− q2)

η8(2τ) η2(3τ) η2(12τ)

η4(6τ) η2(4τ) η2(τ)
= q2(1+w2q)

∞∑

k=0

(k + 1)(−)k(wq3)k

(1 + w2q2k+3)

+ (1 +w/q)
∞∑

k=0

k (−)k (w2q)k

(1 + wq2k+1)
, (3.14)

(xii) Lastly, if we put α = iq and β = −iq in (3.8), we get,

q−1/6 η6(2τ)

(1− q2) η2(4τ)
= q2(1 + iq)

∞∑

k=0

(k + 1)(iq)k

(1 + iq2k+3)
+

(
1−

i

q

) ∞∑

k=0

k (−iq)k

(1− iq2k+1)

(3.15)
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