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1. Introduction

Andrews’ multidimensional extension [1, Theorem 4] of Watson’s transfor-
mation between a very-well-poised 8φ7-series and a balanced 4φ3-series [6, (2.5.1);
Appendix (III.18)] in its full beauty reads

n∑

k=0

(a; q)k (q
√
a; q)k (−q

√
a; q)k (b1; q)k (c1; q)k · · · (bm+1; q)k (cm+1; q)k (q−n; q)k

(
√
a; q)k (−

√
a; q)k (qa/b1; q)k (qa/c1; q)k · · · (qa/bm+1; q)k (qa/cm+1; q)k (qn+1a; q)k

×
(

am+1qm+1+n

b1c1 · · · bm+1cm+1

)k

=
(qa; q)n (qa/bm+1cm+1; q)n
(qa/bm+1; q)n (qa/cm+1; q)n

∑

0≤i1≤i2≤···≤im≤n

ai1+···+im−1qi1+···+im

(b2c2)i1 · · · (bmcm)im−1
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× (q−n; q)im
(bm+1cm+1/aqn; q)im

m∏

k=1

(qa/bkck; q)ik−ik−1 (bk+1; q)ik (ck+1; q)ik
(q; q)ik−ik−1 (qa/bk; q)ik (qa/ck; q)ik

, (1.1)

where, by definition, i0 := 0. Here, (α; q)k = (1 − α)(1 − αq) · · · (1 − αqk−1) if
k ≥ 1 and (α; q)0 = 1.TThis formula has found important applications to the
theory of partition identities (see [1]).

Remarkably, Andrews’ formula has started a surprising new life recently. Its
utility for proving arithmetic properties of coefficients of certain linear forms for
values of the Riemann zeta function at integers was discovered by the authors
in [9], and was also exploited in [10] for proving the equality of certain multiple
integrals and hypergeometric series. Closely related are the applications given
by Zudilin in [16,17]. The afore-mentioned articles make actually “only” use of
the q = 1 special case of (1.1) (see (4.2) below for the explicit statement of that
special case). The line of argument developed in [9] has been extended to the
q-case by Jouhet and Mosaki in [8] to establish irrationality results for values
of a q-analogue of the zeta function. Moreover, Guo, Jouhet and Zeng [7] have
extended Zudilin’s work in [16] to the q-case, together with further applications
of Andrews’ formula (1.1). In a completely different field, Beliakova, Bühler and
Lê [3,4,11] have exploited (1.1) in the study of quantum invariants of manifolds.
Finally, Andrews himself returned to his identity after over 30 years to prove deep
partition theorems in [2].

The purpose of the present paper is to add another item to this list of appli-
cations of Andrews’ formula. More precisely, we show how the ideas from [9] lead
to an alternative proof of a conjecture from [13] on the arithmetic behaviour of the

coefficients in certain linear forms of 1 and Catalan’s constant G =
∑∞
k=1

(−1)k−1

(2k−1)2
.

It is considerably simpler and more stream-lined than the first proof [12] by one
of the authors, which used a somewhat indirect method based on Padé approx-
imations. A partial, “asymptotic,” proof had been given earlier by Zudilin in
[15].

We give a precise statement of the conjecture in the next section, where we
also derive explicit expressions for the coefficients an and bn in the linear forms
of 1 and Catalan’s constant. The arithmetic claim for the coefficient an is then
proved in Section 3 with the help of a limit case of Whipple’s transformation
between a very-well-poised 7F6-series and a balanced 4F3-series (the latter being
the q = 1 special case of the afore-mentioned transformation formula of Watson).
The arithmetic claim for the coefficient bn is proved in Section 4 with the help
of the q = 1 special case of Andrews’ formula (1.1), given explicitly in (4.2).
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2. A Linear Form for Catalan’s Constant

Let us consider the series

Gn = n!
∞∑

k=1

(−1)k
(
k +

n− 1
2

)
(k − n)n(k + n)n
(
k − 1

2

)3
n+1

, (2.1)

where the Pochhammer symbol (α)k is defined by (α)k = α(α+1) · · · (α+ k− 1)
if k ≥ 1 and (α)0 = 1. By applying a partial fraction decomposition with respect
to k to the summand, and by performing the appropriate summations, it is not
difficult to see (cf. [5, Sec. 1.4] for details on this kind of calculation) that

Gn = anG− bn,

where

an = 4(−1)n−1
n∑

j=0

∂

∂ǫ

((n
2
− j + ǫ

)( n!

(1− ǫ)j (1 + ǫ)n−j

)3

×
(
n+ j − ǫ− 1

2

n

)(
2n− j + ε− 1

2

n

))∣∣∣∣∣
ε=0

, (2.2)

and

bn = (−1)n
n∑

j=0

3∑

e=1

1

(3− e)!
∂3−e

∂j3−e

((n
2
− j + ε

)( n!

(1− ε)j (1 + ε)n−j

)3

×
(
n+ j − ε− 1

2

n

)(
2n− j + ε− 1

2

n

))∣∣∣∣∣
ε=0

j∑

k=1

(−1)k
(
k − 1

2

)e . (2.3)

Writing dn for lcm(1, 2, . . . , n), it is easy to see by a standard approach
(see [13, Sec. 5]) that 24nd2nan and 24nd

3
2nbn are integers. Based on computer

calculations, the second author and Zudilin conjectured however (cf. [13, p.720])
that in fact even 24nan and 24nd

2
2nbn are integers.While this is still too weak for

proving the irrationality of Catalan’s constant G, it is nevertheless an interesting
and non-obvious observation which we shall prove in the two subsequent sections.
This proof makes use of identities for (generalised) hypergeometric series, the
latter being defined by

q+1Fq

[
α0, α1, . . . , αq
β1, . . . , βq

; z

]
=

∞∑

k=0

(α0)k (α1)k · · · (αq)k
k! (β1)k · · · (βq)k

zk.

As we already mentioned in the Introduction, an earlier (but more involved)
proof is due to one of the authors [12].
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3. The Coefficient an

The purpose of this section is to prove the following theorem.

Theorem 3.1. For all positive integers n, the number 24nan is an integer.

For accomplishing the proof of this theorem (as well as the proof of Theorem
2 in the following section), we need the following two arithmetic auxiliary facts
(cf. [14, Sec. 7] and [13, Lemma 6], respectively). Following [14] (where this is
attributed to Nesterenko), we shall call the expressions R1(α, β; t) and R2(α, β; t)
in the two lemmas below elementary bricks.

Lemma 3.1. Given integers α and β, let

R1(α, β; t) =






(t+ β)α−β
(α− β)! if α ≥ β,
(β − α− 1)!
(t+ α)β−α

if α < β.

Then, for all integers α, β, k,H with α ≥ β and H ≥ 0, the number

dHα−β ·
1

H!

∂H

∂tH
R1(α, β; t)

∣∣∣
t=−k

is an integer. Furthermore, for all integers α, β, k,H with α ≤ k ≤ β − 1 and
H ≥ 0, the nnumber

dHβ−α−1 ·
1

H!

∂H

∂tH
R1(α, β; t)(t+ k)

∣∣∣
t=−k

is an integer.

Lemma 3.2. Given integers α and β with α ≥ β, let

R2(α, β; t) = 22(α−β)
(t+ β − 1

2 )α−β
(α− β)! .

Then, for all integers k and H with H ≥ 0, the number

dH2(α−β) ·
1

H!

∂H

∂tH
R2(α, β; t)

∣∣∣
t=−k

is an integer.

In order to apply these two lemmas, we need an alternative expression for
the coefficient an, see the lemma below. The expression in (3.1) was already
given in [12, Sec. 4.1]. Again, it was obtained there in a somewhat roundabout
way. Here, the equality in the next-to-last displayed equation in [12, Sec. 4.2] is
explained directly.
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Lemma 3.3. For all non-negative integers n, we have

an = −4
n∑

j=0

(
n

j

)(
n− 1

2

j

)(
n+ j − 1

2

j

)
. (3.1)

Proof. We loosely follow analogous considerations in [9, Lemma 7].

Let Hm denote the m-th harmonic number, defined by Hm =
∑m
j=1

1
j . By

abuse of notation, we “extend” harmonic numbers to half-integers m by defining

Hm =
∑⌈m⌉
j=1

1
m−j+1 . For example,

H5/2 =
1

5/2
+

1

3/2
+

1

1/2
.

We rewrite the expression for an given in (2.2) in the form

an = 4(−1)n−1
n∑

j=0

(n
2
− j
)(n
j

)3(n+ j − 1
2

n

)(
2n− j − 1

2

n

)

×
(

1
n
2 − j

+ 3Hj − 3Hn−j +H2n−j− 1

2

−Hn+j− 1

2

−Hn−j− 1

2

+Hj− 1

2

)

= 4(−1)n−1 lim
ε→0

2

ε

∞∑

j=0

(n
2
+
ε

2
− j
)(n
j

)

× (n− j − ε+ 1)j
(1− ε)j

(n− j + ε+ 1)j
(1− 2ε)j

(j + 1
2)n

(1− ε)n
(n− j + ε+ 1

2 )n

(1 + ε)n
.

In hypergeometric notation, this reads

an = 4(−1)n−1 lim
ε→0

(n+ ε) (12 )n (n+ ε+
1
2 )n

ε(1− ε)n (1 + ε)n

× 6F5

[
−n− ε, 1− n

2 − ε
2 , n+

1
2 ,−n,−n+ ε, 12 − n− ε

−n
2 − ε

2 ,
1
2 − 2n− ε, 1− ε, 1− 2ε, 12

;−1
]
.

To the 6F5-series we apply the transformation formula (see [6, (3.10.4), q → 1])

6F5

[
a, 1 + a

2 , b, x, y,−N
a
2 , 1 + a− b, 1 + a− x, 1 + a− y, 1 + a+N

;−1
]

=
(1 + a)N (1 + a− x− y)N
(1 + a− x)N 1 + a− y)N 3F2

[
−N,x, y

−a−N + x+ y, 1 + a− b; 1
]
,
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8 C. Krattenthaler and T. Rivoal

where N is a non-negative integer. Thus, we obtain

an = 4(−1)n−1 lim
ε→0

(−1)n n!
(1− ε)n 3

F2

[
−n, n+ 1

2 ,
1
2 − n− ε

1, 1− 2ε ; 1

]

= −4
n∑

j=0

(
n

j

)(
n− 1

2

j

)(
n+ j − 1

2

j

)
,

as we claimed.

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2 with α = j, β = H = 0, and k = −n re-
spectively k = −n−j, the numbers 22n

(n− 1

2

j

)
and 22n

(n+j− 1

2

j

)
are integers. Given

the expression for an in Lemma 3.3, this implies the assertion of the theorem.

4. The coefficient bn

The purpose of this section is to prove the following theorem.

Theorem 4.1. For all positive integers n, the number 24nd22nbn is an integer.

Proof. This proof follows loosely analogous considerations in [9, Proposition 7].
It depends on an arithmetic fact which is stated and proved separately in Lemma
4 below.

Let us start by reordering the summations in (2.3) to obtain

bn = (−1)n
3∑

e=1

n∑

k=1

(−1)k
(
k − 1

2

)e
1

(3− e)!
∂3−e

∂ε3−e

(
n∑

j=k

(n
2
− j + ε

)( n!

(1− ε)j (1 + ε)n−j

)3

×
(
n+ j − ε− 1

2

n

)(
2n− j + ε− 1

2

n

))∣∣∣∣∣
ε=0

. (4.1)

Also for bn, we need an alternative expression. It is provided for by the
q = 1 special case of Andrews’ identity (1.1). More precisely, in (1.1) on replaces
a by qa, bi by qbi , ci by qci , i = 1, 2, . . . ,m+ 1, and then lets q tend to 1. As a
result, one obtains the transformation formula

2m+5F2m+4

[
a, a2 + 1, b1, c1, . . . , bm+1, cm+1,−n

a
2 , 1 + a− b1, 1 + a− c1, . . . , 1 + a− bm+1, 1 + a− cm+1, 1 + a+ n

; 1

]

=
(1 + a)n (1 + a− bm+1 − cm+1)n
(1 + a− bm+1)n (1 + a− cm+1)n

∑

0≤i1≤i2≤···≤im≤n

(−n)im
(bm+1 + cm+1 − a− n)im
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×
(

m∏

k=1

(1 + a− bk − ck)ik−ik−1 (bk+1)ik (ck+1)ik
(ik − ik−1)! (1 + a− bk)ik (1 + a− ck)ik

)

, (4.2)

where again, by definition, i0 := 0. In this formula we putm = 3, a = −n+2k−2ε,
b1 = −n + k − ε, b2 = −n + k − ε + 1

2 , c2 = n + k − ε + 1
2 , b3 = −n + k − ε,

c3 = k − 2ε− δ + 1, b4 = −n+ k − ε, c4 = 1, N = n− k, and then let δ tend to
0. This leads to the identity

n∑

j=k

(n
2
− j + ε

)( n!

(1− ε)j (1 + ε)n−j

)3(n+ j − 1
2 − ε

n

)(
2n− j − 1

2 + ε

n

)

= −1
2

(
k − ε− 1

2

) ∑

0≤i1≤i2≤i3≤n−k

(−1)i2 i3!

i1! (i2 − i1)! (i3 − i2)!
(12 − ε)n

(12 − ε)k (1 + ε)n−k

×(n− ε+
1
2)k+i1

(1− ε)k+i1
(n+ i1 − i2 + ε+ 1

2 )n−k−i1
(1 + ε)n−k−i1

n!

(1− ε)k+i2 (1 + ε)n−k−i2

× (12 + n+ i1 − i2)i2−i1
(12 + n+ ε+ i1 − i2)i2−i1

(n− 1
2 − i3 + ε)i3+1

(n− 1
2 − i3 − ε)i3+1

(ε)i3−i2 (1− 2ε)k+i2 (12 + ε)n−i3−1
(1− 2ε)k−1 (12 + ε)n−k−i3 (1− ε)k+i3

.

(4.3)
Using the notations R1(α, β; t) and R2(α, β; t) for elementary bricks that

were introduced in Lemmas 3.1 and 3.2, and the notations

R3(n, i1, i2, ε) =
(12 + n+ i1 − i2)i2−i1

(12 + n+ ε+ i1 − i2)i2−i1
,

R4(n, i3, ε) =
(n− 1

2 − i3 + ε)i3+1
(n− 1

2 − i3 − ε)i3+1
,

R5(n, k, i2, i3, ε) = 22(k−1)
(ε)i3−i2 (1− 2ε)k+i2 (12 + ε)n−i3−1
(1− 2ε)k−1 (12 + ε)n−k−i3 (1− ε)k+i3

for the special bricks R3(n, i1, i2, ε), R4(n, i3, ε), and R5(n, k, i2, i3, ε), use of (4.3)
in (4.1) yields

24nd22nbn = −(−1)nd22n
3∑

e=1

n∑

k=1

(−1)k
(
k − 1

2

)e
1

(3− e)!
∂3−e

∂ε3−e

(

(2k − 2ε− 1)

×
∑

0≤i1≤i2≤i3≤n−k

(−1)i2 i3!

i1! (i2 − i1)! (i3 − i2)!
×R2(n, k; 1−ε) ·ε ·R1(0, n+1−k; ε)

×R2(k + i1, 0;n− ε+ 1) · (−ε) ·R1(0, k + i1;−ε)
×R2(n− k − i1, 0;n+ i1 − i2 + 1) · ε ·R1(0, n− k − i1; ε)
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10 C. Krattenthaler and T. Rivoal

×(−1)k+i2ε·R1(−k−i2, n−k−i2+1; ε)·R3(n, i1, i2, ε)·R4(n, i3, ε)·R5(n, k, i2, i3, ε)
)∣∣∣∣∣

ε=0

.

(4.4)
We can rewrite this in the form

24nd22nbn = −(−1)nd22n
3∑

e=1

n∑

k=1

(−1)k
(
k − 1

2

)e
1

(3− e)!
∂3−e

∂ε3−e

{

(2k − 2ε− 1)

×
∑

0≤i1≤i2≤i3≤n−k

C(i1, i2, i3) ·R5(n, k, i2, i3; ε)
M∏

h=1

th(n, k, i1, i2, i3; ε)

}∣∣∣∣∣
ε=0

,

where each C(i1, i2, i3) is an integer and each th is an expression R1(α, β;±ε +
K) with α ≥ β, an expression R1(α, β;±ε) multiplied by ±ε with α < β, an
expression R2(α, β;±ε+K) with α ≥ β, or one of R3(n, i1, i2, ε) and R4(n, i3, ε).

By Leibniz’s formula, this last expression can be expanded into

24nd22nbn = −(−1)n
3∑

e=1

n∑

k=1

2(−1)kde−12n(
k − 1

2

)e−1

×d3−e2n

{
∑

ℓ0+···+ℓM=3−e

1

ℓ0! ℓ1! · · · ℓM !
∑

0≤i1≤i2≤i3≤n−k

C(i1, i2, i3)

× ∂
ℓ0

∂εℓ0
R5(n, k, i2, i3; ε)

M∏

h=1

∂ℓh

∂εℓh
th(n, k, i1, i2, i3; ε)

}∣∣∣∣∣
ε=0

+(−1)n
3∑

e=1

n∑

k=1

2(−1)kde2n(
k − 1

2

)e d2−e2n

{
∑

ℓ0+···+ℓM=2−e

1

ℓ0! ℓ1! · · · ℓM !

∑

0≤i1≤···≤i3≤n−k

C2(i1, i2, i3)
∂ℓ0

∂εℓ0
R5(n, k, i2, i3; ε)

M∏

h=1

∂ℓh

∂εℓh
th(n, k, i1, i2, i3; ε)

}∣∣∣∣∣
ε=0

.

(4.5)
Now, for any h with 1 ≤ h ≤M , we claim that

dℓh2n
ℓh!

∂ℓh

∂εℓh
th(n, k, i1, i2, i3; ε)

∣∣∣
ε=0

is an integer. Indeed, if th(n, k, i1, i2, i3; ε) is one of the elementary bricks R1(. . . )
(possibly multiplied by ±ε) or R2(. . . ), then this follows directly from Lemmas
1 and 2. If th(n, k, i1, i2, i3; ε) is one of the special bricks R3(. . . ) or R4(. . . ), this
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On a Linear Form for Catalan’s Constant 11

can be seen directly. Since 2(k − 1
2) divides d2n, Identity (4.5) would imply the

assertion of the theorem once we could prove that

dℓ02n
ℓ0!

∂ℓ0

∂εℓ0
R5(n, k, i2, i3; ε)

∣∣∣
ε=0

(4.6)

is an integer as well.

To accomplish this, we distinguish between two cases. If i2 = i3, then
R5(n, k, i2, i3; ε) can be factored as follows:

R5(n, k, i2, i3; ε) = R5(n, k, i3, i3; ε)

= 22(k−1)
(1− 2ε)k+i3 (12 + ε)n−i3−1

(1− 2ε)k−1 (1− ε)k+i3 (12 + ε)n−k−i3
= R1(k + i3, 0; 1− 2ε)

× (−ε) ·R1(0, k + i3 + 1;−ε) ·R2(k − 1, 0;n− k − i3 + ε)
· (−2ε) ·R1(0, k;−2ε).

Another application of Leibniz’s formula and of Lemmas 1 and 2 show that
(4.6) is an integer for i2 = i3.

If i2 < i3, one observes that

R5(n, k, i2, i3; ε) = ε ·R6(n, k, i2, i3; ε),

where R6(. . . ) is the special brick defined in Lemma 3.4. Consequently, for ℓ0 ≥ 1,
we have

1

ℓ0!

∂ℓ0

∂εℓ0
R5(n, k, i2, i3; ε)

∣∣∣∣∣
ε=0

=
1

(ℓ0 − 1)!
∂ℓ0−1

∂εℓ0−1
R6(n, k, i2, i3; ε)

∣∣∣∣∣
ε=0

.

The above relation together with Lemma 3.4 with m1 = i3 and m2 = i2 then
shows that (4.6) is also an integer for i2 < i3.

This completes the proof of the theorem.

Lemma 4.1 Let

R6(n, k,m1,m2; ε) = 22(k−1)
(1 + ε)m1−m2−1 (1− 2ε)k+m2

(12 + ε)n−m1−1

(1− 2ε)k−1 (1− ε)k+m1
(12 + ε)n−k−m1

.

Then, for all integers n, k,m1,m2,H with H ≥ 0 and 0 ≤ m2 < m1 ≤ n−k,
the number

dH+12n · 1
H!

∂H

∂εH
R6(n, k,m1,m2; ε)

∣∣∣
ε=0

(4.7)
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12 C. Krattenthaler and T. Rivoal

is an integer.

Proof. We loosely follow analogous arguments in the proof of [9, Lemme 11]. In
fact, the arguments given in the last paragraph here show that that proof could
have been simplified.

We shall show that, for all integers 1 ≤ f1 ≤ f2 ≤ · · · ≤ fH+1 ≤ 2n, the
number

dH+12n · 1
H!

22(k−1)
(m1 −m2 − 1)! (k +m2)! (12 )n−m1−1

(k − 1)! (k +m1)! (12 )n−k−m1

1

f1f2 · · · fH
(4.8)

is an integer. In view of the definition of R6(n, k,m1,m2; ε), this implies that
(4.7) is an integer.

We prove the above claim by verifying that the p-adic valuation of (4.8) is
non-negative for all prime numbers p. Writing [α] for the greatest integer less
than or equal to α, this p-adic valuation is equal to

(H+1)·[logp(2n)]+
∞∑

ℓ=1

([
k +m2
pℓ

]
+

[
m1 −m2 − 1

pℓ

]
+

[
2n− 2m1 − 2

pℓ

]
−
[
n−m1 − 1

pℓ

]

−
[
k − 1
pℓ

]
−
[
k +m1
pℓ

]
−
[
2n− 2k − 2m1

pℓ

]
+

[
n− k −m1

pℓ

]) H∑

h=1

vp(fh) (4.9)

for any prime number p (also for p = 2!).If p > 2n, it is obvious that this
expression is non-negative since alltterms vanish. Hence, from now on we assume
that p ≤ 2n.

In fact, the conditions on k, n,m1,m2 imply that the terms of the infinite
series in (4.9) vanish for ℓ > [logp(2n)]. The expression (4.9) can therefore be
rewritten in the form

[logp(2n)]+

[logp(2n)]∑

ℓ=1

([
k +m2
pℓ

]
+

[
m1 −m2 − 1

pℓ

]
+

[
2n− 2m1 − 2

pℓ

]
−
[
n−m1 − 1

pℓ

]

−
[
k − 1
pℓ

]
−
[
k +m1
pℓ

]
−
[
2n− 2k − 2m1

pℓ

]
+

[
n− k −m1

pℓ

]) H∑

h=1

(
vp(fh)− [logp(2n)]

)
.

(4.10)
Since, by definition, 1 ≤ fh ≤ 2n for all h, the terms in the sum over h are

non-positive. Hence, it suffices to show that the summands in the sum over ℓ are
all at least −1.
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In order to accomplish this, we write N = {n/pℓ}, K = {k/pℓ}, M1 =
{m1/pℓ},M2 = {m2/pℓ} for the fractional parts of n/pℓ, k/pℓ, m1/pℓ and m2/pℓ,
respectively. With these notations, the summand of the sum over ℓ becomes

[K +M2] +

[
M1 −M2 −

1

pℓ

]
+

([
2N − 2M1 −

2

pℓ

]
−
[
N −M1 −

1

pℓ

])

−
[
K − 1

pℓ

]
− [K +M1]−

(
[2N − 2K − 2M1]− [N −K −M1]

)
. (4.11)

We first discuss the case K = 0. For this special choice of K, the expression
in (4.11) reduces to

[
M1 −M2 −

1

pℓ

]
+

([
2N − 2M1 −

2

pℓ

]
−
[
N −M1 −

1

pℓ

])

+1−
(
[2N − 2M1]− [N −M1]

)
. (4.12)

Since, by elementary properties of the (weakly) increasing function x �→
[2x]− [x], we have
([
2N − 2M1 −

2

pℓ

]
−
[
N −M1 −

1

pℓ

])
−
(
[2N − 2M1]− [N −M1]

)
≥ −1,

the expression in (??) is indeed ≥ −1.
From now on let K > 0, i.e., K ≥ 1

pℓ
. In this case, clearly,

[
K − 1

pℓ

]
= 0 and

([
2N − 2M1 −

2

pℓ

]
−
[
N −M1 −

1

pℓ

])
−
(
[2N − 2K − 2M1]−[N −K −M1]

)
≥ 0.

Hence, if the expression in (4.11) wants to be ≤ −2, then we must have

[K +M2] = 0,
[
M1 −M2 − 1

pℓ

]
= −1 and [K +M1] = 1, that is

K +M2 < 1, (4.13)

M1 −M2 −
1

pℓ
< 0, (4.14)

K +M1 ≥ 1. (4.15)

But a combination of (4.13) and (4.15) yieldsM1−M2 > 0, which contradicts
(4.14) since the denominators of the rational numbers M1 and M2 are both pℓ.
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