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Abstract: This paper investigates the radial vibration of magneto visco-elastic
shell. The material of the shell being aeolotropic and density ρ of the shell varies
as ρ = ρ0r

n, where ρ0 is constant and n is any integer. Lastly, frequency equation
have been derived.
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1. Introduction

Recently, a great deal of activity has emerged in the study of interaction of
elastic and electromagnetic fields due to their extensive applications in science
and technology. Kaliski [1], Narain [3,4], Narain and Srivastava [5], Narain and
Verma [6,7], Nowacki [8], Nowacki and Kaliski [9], Paria [10] and many other have
investigated the problems concerning elastic and electromagnetic fields. Sequal to
there, the present paper in an attempt to investigate radial vibration of megneto-
visco-elastic shell. The material of the shell being aeolotropic and density of the
shell to be varying as the integral power of radius vector in the form ρ = ρ0r

n

where ρ0 is constant and n is any integer. Frequency equation in several cases
have been derived.

2. Fundamental Equations and Boundary Conditions

We consider aeolotropic visco-elastic prefectly conducting cylindrical shell
of inner radius r1 and outer radius r2, and assumed that the space outside the
shell to be surrounded by vacuum. We also consider that the boundary of the
shell is mechanically stressed free. Initially, there exists an axial magnetic field
of intensity �H in the shell. The constituting relation for aeolotropic visco-elastic
bodies in cylindrical co-ordinates (r, θ, z) may be written as
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∂
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)
err
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∂
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+ λ′′

∂2

∂t2

)
eθθ

σzz =

(
λ+ λ′

∂
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+ λ′′

∂2

∂t2

)
ezz

(2.1)

where σrr, σθθ, σzz and err, eθθ, ezz are the components of stress and strain
respectively, λ, λ′, λ′′ are material constants. The equation of motion of magneto-
elasticity for a perfect conductor with unit permeability as given by Kaliski [1]
are

∂σrr

∂r
+

1

r
(σrr − σθθ) +

1

4π

{
rot.rot(�u× �H

}
× �H = ρ

∂2ur

∂t2
(2.2)

�E = − 1

c

∂�u

∂t
× �H, �h = rot.(�u× �H) (2.3)

where �u is the mechanical displacement vector. �E is the electric intensity vector
and �h the perturbation in the magnetic intensity vector.

The electromagnetic field equations is vacuum are

(
∇2 − 1

c2
∂2

∂t2

)
�E∗ = 0; (2.4)

(
∇2 − 1

c2
∂2

∂t2

)
�h∗ = 0; (2.5)

rot . �E∗ = − 1

c

∂�h∗

∂t
; (2.6)

rot .�h∗ = − 1

c

∂ �E∗

∂t
, (2.7)

where ∇2 =
∂2

∂r2
+

1

r

∂

∂r
; �E∗, �h∗ denote the value of �E and �h respectively in

vaccum. The components of strain as gives in Love [2] are
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1

r

∂uθ
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+
ur

r
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∂uz
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∂uθ
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∂ur
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∂uz
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∂uθ
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r
+

1

r

∂ur
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.

For radial vibration, we have

uθ = uz = 0, ur = U(r)eiwt (2.8)
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The components of strain take the form

err =
∂u

∂r
eiwt, eθθ =

u

r
eiwt, ezz = 0 (2.9)

Also,
eθz = erz = erθ = 0

h∗r = h∗θ = 0, h∗z = h∗ = V (r)eiwt

Hr = Hθ = 0, Hz = H

E∗r = E∗θ = 0, E∗z = Weiwt
(2.10)

where V and W are functions of r alone.

The equation (2.3) gives

E = −H1

c

∂u

∂t
= − iw

c
H1Ue

iwt

h = −H1

r

∂(ru)

∂r
= −H1

(
∂U

∂r
+

U

r

)
eiwt.

(2.11)

From (2.5), (2.7) and (2.10) we get

∂2U

∂r2
+

1

r

∂U

∂r
+

w2

c2
U = 0 (2.12)

W =
ic

w

∂U

∂r
. (2.13)

The boundary conditions are given by

σrr + Trr = T ∗rr on r = r1;
σrr + Trr = T ∗rr on r = r2;
�E = �E∗ on r = r1;
�E = �E∗ on r = r2,

(2.14)

where Trr, T ∗rr are Maxwellian tensors in the shell and vacuum respectively and
may be expressed as

Trr = −H1

4π
h =

H2
1

4π

(
∂U

∂r
+

U

r

)
eiwt

T ∗rr = −H1

4π
h∗ =

H1

4π
Ueiwt.

(2.15)

Therefore, the stress equation (2.1) with the help of equations (2.8) and (2.9)
takes the form

σrr =

(
λ+ λ′

∂

∂t
+ λ′′

∂2

∂t2

)
∂U

∂r
eiwt (2.16)
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σθθ =

(
λ+ λ′

∂

∂t
+ λ′′

∂2

∂t2

)
U

r
eiwt. (2.17)

In case of radial vibration

1

4π

{
rot.rot(�u× �H

}
× �H =

H2

4π

{
∂2U

∂r2
+

1

r

∂U

∂r
− U

r2

}
eiwt. (2.18)

3. Method of Solution

Suppose that the material density ρ varies as

ρ = ρ0r
n (3.1)

where ρ0 is constant and n is any integer, using equations (2.16), (2.17) and (2.18)
the equation (2.2) gives

∂2U

∂r2
+

1

r

∂U

∂r
− U

r2
+

ρ0r
nw2U

(
K +

H2

4π

) = 0 (3.2)

where

K = λ+ iwλ′ − w2λ′′ (3.3)

using the transformation,

x =
2

n+ 2
r(n+2)/2 (3.4)

the equation (3.2), takes the form

∂2U

∂x2
+

1

x

∂U

∂x
+

{
µ2 − α2

x2

}
U = 0 (3.5)

where

µ2 =
ρ0w

2

(
K +

H2

4π

) , α2 =
2

n+ 2
. (3.6)

The solution of the equation (3.5) is given by

U = AJα(µx) +BYα(µx) (3.7)

where Jα and Yα are the Bessel’s functions of first and second kind of order α, A
and B are constants.
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Using equations (2.9) and (3.7), the equations (2.1) and (2.15) take the form

σrr = (λ+λ′iw−w2λ′′)
{
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(
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n+ 2

)
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(
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n+ 2
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eiwt

(3.8)
and
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H2

4π
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(
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)
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1
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(
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)}

+B

{
µrn/2Yα−1

(
2µ

n+ 2
r(n+2)/2

)
+

1

r
Yα

(
2µ
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 e

iwt.

(3.9)
Again, the solution of the equation (2.12) is given by

U = CJ0

(wr
c

)
+DY0

(wr
c

)
, (3.10)

where C and D are constants and J0, Y0 are Bessel’s functions of order zero.
Hence, the Maxwellian tensor T∗rr in vacuum is given by

T ∗rr =
H

4π
Ueiwt =

H

4π

{
CJ0

(wr
c

)
+DY0

(wr
c

)}
eiwt (3.11)

thus,

T ∗rr =






H

4π
CJ0

(wr
c

)
on r ≥ r2

H

4π
DY0

(wr
c

)
on r ≤ r2





(3.12)

Using equation (3.8), the equation (2.11) gives

E = − iw

c
HUeiwt = −iwH

c

{
AJα

(
2µ

n+ 2
r(n+2)/2

)
+BYα

(
2µ

n+ 2
r(n+2)/2

)}
eiwt.

(3.13)
Using equation (3.7) in equation (2.13) we get

E∗ = weiwt =
ic

w

∂U

∂r
eiwt = −i

{
CJ1

(wr
c

)
+DY1

(wr
c

)}
eiwt. (3.14)

Hence,

E∗ =






−iCJ1
(wr
c

)
on r ≥ r2

−iDY1

(wr
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)
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. (3.15)
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Using equations (3.8), (3.9) and (3.2), the equation (2.14) gives

AX11 +BX12 +DX14 = 0 (3.16)

AX21 +BX22 + CX23 = 0. (3.17)

Using the equation (3.13) and (3.5), the equation (2.14) gives

AX31 +BX32 +DX34 = 0 (3.18)

AX41 +BX42 + CX43 = 0. (3.19)

where
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{
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(
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1

)}
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H
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,

X31 = − wH

c
Jα

(
2µ

n+ 2
r
(n+2)/2
2

)
,
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c
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(
2µ
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r
(n+2)/2
2

)
,
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,
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(
2µ
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r
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,
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c
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(
2µ
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)
,
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c

)
.

Eliminating A,B,C,D from equations (3.16),(3.17),(3.18) and (3.19) we get
∣∣∣∣∣∣∣∣

X11 X12 0 X14

X21 X22 X23 0
X31 X32 0 X34

X41 X42 X43 0

∣∣∣∣∣∣∣∣
= 0
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On solving the determinants, we get

X14X32 +X34X12

X23X43 −X23X42
=

X11X34 +X14X31

X43X21 −X41X42
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=
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(3.20)

where
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If x is small, we use the following relations

Y0(x) = O(log x) = K log x

Yn(x) = O

(
1

xn

)
=

K

xn
, where K is constant;

Jn(x) =
xn

2n
√
n+ 1

.

(3.21)

After simplification equation (3.20) together with equation (3.21) we get
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2
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α
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+
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+
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+
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+
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2
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)n/2(r2
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+
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(
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n+2
2
+1

1

+
(n+ 2)

(
K +

H2

4π

)2

∂ρ0r
(n+2
2
+1

1

= 0. (3.22)

If there were no magnetic field, i.e., H = 0 and λ′ = λ′′ = 0 then the
frequency equation at for n = 0⇒ α = 1 for aeolotgropic cylindrical shell as

w2 =
λ2

r22ρ
2
0

. (3.23)

The presence of r2 in the dinominator of frequency equation (3.23) indi-
cates that the frequency decreases when r2 increases. It also indicates that the
frequency does not depend upon the inner radius of the shell.

The following table indicates the frequency of different material:

S. No. Material ρ0 λ r2 w ω = w × 1011

1. Copper 8.9 8.5× 1011 1 1.06× 1011 1.06

2 0.53× 1011 0.53

3 0.35× 1011 0.35

4 0.27× 1011 0.27

2. Steel 7.8 11.2× 1011 1 1.43× 1011 1.43

2 0.73× 1011 0.73

3 0.47× 1011 0.47

4 0.36× 1011 0.36

3. Aluminium 2.7 5.6× 1011 1 2.07× 1011 2.07

2 1.03× 1011 1.03

3 0.69× 1011 0.69

4 0.51× 1011 0.51

4. Glass 2.5 2.8× 1011 1 1.12× 1011 1.12

2 0.56× 1011 0.56

3 0.28× 1011 0.28

4 0.14× 1011 0.14
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