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Abstract: In this paper, an attempt has been made to establish certain results
involving Lambert series and continued fractions.
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1. Introduction
It is now customary to define the basic hypergeometric series by

a,b ;q;z] 5 [a;q)n (b5 ) 2"
®ila,b; c;q; 2] = 2@ = —_ 1.1
21| @7 = 1[ c 2 5 d)n (45 qn (L.1)

n=0

1, n =0,
[G;Q]:{ 1-a)(1—aq)...(1—ag™'), n=123,...

is the g-shifted factorial and it is assummed that ¢ # ¢~™ for m = 0,1,2,---.
Also, |g| < 1 and |z| < 1 for the converegence of the series (1.1).

The generalized bilateral basic hypergeometric series is defined by
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where | ————————| < |z| < 1 for the convergence of (1.2) and [a1, a2, as, ... ar;qln =
a1,a2,y...,0p
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Other notations appearing in this paper have their usual meanings. Bailey’s
sum for a well-poised 3Ws is:

g [b e d  5g;qfbed ] _ i b, ¢, d; aln(g/bed)"”
70 a/b,q/e, q/d L la/ba/eq/d sl
_ _la.q/be, q/bd, g/cd; g (13)
lg/b,q/c,q/d, q/bed ;5 )
[3; App (II)(IL.31)]
Taking ¢ = 1/b in (1.3) we have
i [: gl (a/d)" _  lnddlabdbe/dide
= g/d;qln(1 = bg")(1 —q"/b) — (1—1)[g/b,b,q/d,q/d ;ql
As d — o0, (1.4) yields:
i (=) gnintr q; 0% (L5)
o (1 —bg™)(1—q"/b) B (1 — %) [b,q/b ;q]oo' )
Replacing ¢ by ¢*, and then setting b = ¢* and d = ¢’ in (1.4) we have
i [¢7; ¢"|ng" ) [¢%; "2 6", " ¢l
S a5 gk (1= g ta) (1 - gFn=t) (1= q70)[g 450, qF T, gh I ghoo
(1.6)

where i,j # 0 (mod k).
For j =1, (1.6) yields
i [¢%; ¢*]ng*—) _ ;13,10 %; ¢
[qk—z; qk]n(l _ qkn—z)(l _ qkn—z) (1 _ q—z)[qz’ qk—z’ qk—z’ qk—z; qk]oo
(1.7)
We shall make use of (1.5),(1.6),(1.7) and following known results in our
analysis. Denis [2] has also established similar results involving Lambert series
and continued fractions.

n=—oo
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(1.8)

[1; (6.2.22) p.150]
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[1; (7.1.1) p.179]
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[1; (6.2.38) p.154]
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(1.13)

1; (1.1.1) and(1.1.2) p.9]
2. Main Results
(i) Replacing q by ¢? and then setting b = ¢ in (1.5) we get:

o0 n(n+1)

n g™ I U
D (e Bl (e

n=—oo

Again, replacing ¢ by ¢* and then taking b = ¢? in (1.5) we find:

o 2n(n+1) 4. 412
n q q ’q (o]
Z (=) — Ant2)\(] — g4n—2) 7[—2 ]2. 02 ° (2.2)
Nt (I—g"2)1—g¢"2)  (1-g¢?)g* %
Dividing (2.2) by (2.1) and using (1.8) we get:
i ( )n q2n(n+1)
e (@) (A —¢?) g% [ (6
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2
a4 [ a9t @ Pt P P+ (2.3)
(I+q) 1+ 1+ 1+ 1+ 1+ 1+ 1+...J° '
(ii) Again, taking k =4 and ¢ =1 in (1.7) we find:
i (44" ¢*" _ Rl gy
3 a1 = gL =gt (1 - g7 g, ¢eold?; )%
Again, taking k =4 and i = 3 in (1.7) we find:
i [4*:¢"]n " Bt O S U WSS
@ (L — g 13) (1 — ¢4 3) (1—¢73)[¢® ¢*loolg; 415

Dividing (2.5) by (2.4) and using (1.9) we get:

e [7*; ¢"]n ¢"
oo [ (1 — (A — g3 (1-9)(1 - A% a')x
e g5 ¢")n ¢*" (1—-9)3 [¢;9Y%

n:z—:oo (@3 ¢ (1 — g4 1)(1 — gin—t)
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(iii) Taking k =3 and ¢ = 2 in (1.7) we get:

3 (% ’]n ¢" _ 4l
2 [P (1 — @) (1= ¢*2) — (1+9)lg¢%3 2.7)

n=—oo

Again, taking k =3 and i =1 in (1.7) we get:

i (4 ¢*]n 4" S Ut S
@l U@L -3 (- H[e% el
Dividing (2.7) by (2.8) and using (1.10) we get:
i (4% ¢%n q"
ntoo [ 1 - 2) A - ) (1-q)"dle% %
% ;4]0 " (1+9) [ %1%
n=—00 [q2§ q3]n(1 - q3n+1)(1 - q3n_1)

2
(-9 1 g ¢ ¢ q’ (2.9)
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(iv) Replacing q by ¢° and then setting b = ¢* in (1.5) we get:

OO (7)71 q3n(n+1)

> _ 4% ¢°12 (210)
L (1=t 3)(1— ¢on ) R N .

Again, replacing ¢ by ¢ and then taking b = ¢ in (1.5) we have:

i (=) g*rintl) % ¢%)2, (2.11)
= (=g =g (1 =g Y)[e,¢° 560w '
Dividing (2.10) by (2.11) and using (1.11) we get:
io: (7)71 q3n(n+1)
oo (1= g H3)(1 —¢8) A T
> ()" g3 tD) (I+q+¢% [¢%d°%
oo (]_ _ q6n+1)(1 _ q6n—1)
_ 'S 1 g+@ P+ P+ (2.12)
1+qg+¢*) |1+ 1+ 14+ 1+...J° '
(v) Replacing ¢ by ¢® and then setting b = ¢ in (1.5) we get:
i (=) gtnint) (% ¢®)% (2.13)
e (e I B C s I LYl '
Again, replacing ¢ by ¢® and then setting b = ¢ in (1.5) we have:
i (—)" gD (6% ¢%)2, (2.14)
= (L)1 -g*%)  (1-¢79)[¢% ¢ 108 '
Dividing (2.14) by (2.13) and using (1.12) we get:
fo%e) ( )n 4n n+1
Z (1 8n+3)(1 8n—3 2 7. .8
n= oo q ") q [9,9"; 0%
o0 (=) g*n(n D) (L+q+¢%) [¢* 0% ¥l
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PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



94 Satya Prakash Singh

(vi) Lastly, replacing ¢ by ¢® and then taking b = ¢ in (1.5) we get:

i (—)rgorint /2 4% ¢° )% (2.16)
e CE e T B (e | VAR T o '
Again, replacing ¢ by ¢® and then setting b = ¢? in (1.5) we get:
. (=) gt/ 4% ¢°%
= . 2.17
nzz_oo (L=¢2)(1—¢2)  (1-¢2)¢* ¢ ;¢°lw 217)
Dividing (2.17) by (2.16) and using (1.13) we obtain:
i (7)71 q5n(n+1)/2
oo (L= )1 —¢2) ¢ [4,¢%¢"]x
00 (7)71 q5n(n+1)/2 1 +q [q2’ q3; QS]OO
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e \[fl e d ¢ (2.18)
1+q) \IFr1rir11+...J° ‘
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