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Abstract: In this paper we have considered the Bayesian estimation under Type
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error loss function.
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1. Introduction

Let us consider the Finite Range distribution with probability density func-
tion (pdf) given by

f(x;σ, θ) =
1

θx

(x
σ

)1
θ
; θ > 0, σ > 0, 0 < x ≤ σ, (1.1)

where σ is known (Mukherjee and Islam [4]). Let us suppose that n items,
having the life time distribution with pdf as (1.1), are put to life test experiment,
without replacement, and the experiment is terminated as soon as r(≤ n) items
have failed. If X = (X1, · · · ,Xr) denote the random vector of the r observations
(life times) as obtained above. The joint pdf of X is given by

f(x|θ) =
n!

(n− r)!

(
1

θ

)r ( r∏

i=1

xi

)

e−(
Tr
θ ), (1.2)

where

Tr =

[
r∑

i=1

log

(
σ

xi

)
+ (n− r) log

(
σ

x(r)

)]

.
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Thus, the MLE of θ is given by

θ̂ =
Tr

r
(1.3)

and the pdf of θ̂ is given by

f(θ̂) =

(
r
θ

)r

Γ(r)
(θ̂)r−1 e−rθ̂/θ; θ̂ > 0. (1.4)

The Bayes estimator θ̂L of θ, of course, is the optimal estimator relative to the
chosen loss function L. A commonly used loss function is the squared error loss
function (SELF), is symmetric and is given as

L(θ̂, θ) = (θ̂ − θ)2. (1.5)

It is well known that the Bayes estimator under the above loss function,
say θ̂S, is the posterior mean. The SELF is often used due to the fact that it is
symmetrical and also that it does not lead to complicated numerical methods for
various calculations. Several authors, viz., Ferguson [3], Varian [6], Berger [2],
Zellner [7] and Basu and Ebrahimi [1], to name a few, have recognized the inap-
propriateness of using symmetric loss functions in several estimation problems.
These authors have proposed different asymmetric loss functions e.g., Linex and
many of it’s variant forms.

Varian [6] introduced the following convex loss function known is LINEX
(linear-exponential) loss function

L(∆) = bea∆ − c∆− b; a, c �= 0, b > 0, (1.6)

where ∆ = θ̂−θ. It is clear that L(0) = 0 and the minimum occurs when ab = c,
therefore, L(∆) can be written as

L(∆) = b
[
ea∆ − a∆− 1

]
, a �= 0, b > 0, (1.7)

where a and b are the parameters of the loss function may be defined as shape
and scale respectively. This loss function has been considered by Zellner [7], Rojo
[5]. Basu and Ebrahimi [1] considered the L(∆) as

L(∆) = b
[
ea∆ − a∆− 1

]
, a �= 0, b > 0, (1.8)

where

∆ =
θ̂

θ
− 1
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and studied the Bayesian estimation under this asymmetric loss function for
exponential lifetime distribution. This loss function is suitable for the situations
where overestimation of θ is more costly than its underestimation.

Thus Bayes estimator under asymmetric loss L(∆), i.e., a θ̂A is the solution
of the following equation

Eπ

[
1

π
exp

(
aθ̂A

θ

)]

= eaEπ

(
1

θ

)
(1.9)

In this paper, we have obtained Bayes estimator of θ using linex loss function,
under three prior distributions viz., quasi-density

g1(θ) =
1

θd
; θ > 0, d ≥ 0, (1.10)

here d = 0 leads to a diffuse prior and d = 1, a non-informative prior; the inverted
gamma distribution as natural conjugate with parameters α and β (> 0) with
p.d.f. given as

g2(θ) =

{
βα

Γ(α) θ
−(α+1) e−β/θ ; θ > 0 (α, β) > 0

0 ; otherwise
(1.11)

and uniform prior over [α, β] as

g3(θ) =

{
1

β−α ; 0 < α ≤ θ ≤ β

0 ; otherwise
(1.12)

2. Bayes Estimator of θ under Quasi Prior g1(θ)

The posterior pdf of θ under g1(θ), may be obtained, using equation (1.2),

f(θ|x) =
T r+d−1r

Γ(r + d− 1)
θ−(r+d) e−(Tr)/θ, θ > 0, r + d > 1. (2.1)

The Bayes estimator under SELF is given by

θ̂S =
Tr

(r + d− 2)
; r + d > 2. (2.2)

Also, the Bayes estimator under linex loss function is obtained as

θ̂A =

(
1− e−a/(r+d)

a

)

Tr. (2.3)
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The Risk Functions. The risk function of the estimators θ̂S and θ̂A, relative
to SELF are denoted by RS(θ̂S) and RS(θ̂A), respectively and those relative to
linex RA(θ̂S) and RA(θ̂A), respectively are given by

RS(θ̂S) = θ2
[
r(r + 1)

(r + d− 2)2
−

2r

(r + d− 2)
+ 1

]
, (2.4)

RS(θ̂A) = θ2
[
r(r+ 1)

a2
(1− e−a/(r+d))2 −

2r

a
(1− e−a/(r+d)) + 1

]
, (2.5)

RA(θ̂S) = b

[

e−a
(
1−

a

r + d− 2

)
−r

−

(
ar

r + d− 2

)
+ a− 1

]

, (2.6)

RA(θ̂A) = b
[
e−ad/(r+d) − r(1− e−a/(r+d)) + a− 1

]
. (2.7)

3. Bayes Estimator of θ under Natural Conjugate Prior g2(θ)

The posterior pdf of θ under g2(θ), using equation (1.2) comes out to be

f(θ|x) =
(β + Tr)

r+α

Γ(r + α)
θ−(r+α+1) e−

1
θ
(β+Tr). (3.1)

Using equation (3.1), the Bayes estimator under SELF is given by

θ̂S =
β + Tr

(r + α− 1)
; r + d > 2. (3.2)

The Bayes estimator under linex loss function L(∆), using the value of f(θ|x)
from equation (3.1) is the solution of equation (1.9) given by

θ̂A =

(
1− e−a/(r+α+1)

a

)

(β + Tr). (3.3)

The Risk Functions. The risk function of the estimators θ̂S and θ̂A, relative
to SELF are given by

RS(θ̂S) = θ2




(
r(r + 1) + 2rβ

θ + β2

θ2

(r + α− 1)2

)

−
2
(
r + β

θ

)

(r + α− 1)
+ 1



 , (3.4)

and

RS(θ̂A) = θ2
[
C2
(
r(r + 1) +

2rβ

θ
+
β2

θ2

)
− 2C

(
r+

β

θ

)
+ 1

]
, (3.5)
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where

C =

(
1− e−a/(r+α+1)

a

)

.

The risk functions of the estimators θ̂S and θ̂A, relative to linex loss are given
by

RA(θ̂S) = b




(
e
−a
(
1− β

θ(r+α−1)

))(
1−

a

r + α− 1

)
−r

−




a
(
r + β

θ

)

r + α− 1



+ a− 1





(3.6)
and

RA(θ̂A) = b

[(
e
−a(α+1)
(r+α+1)

)(
e
β
θ
(1−ea/(r+α−1)

)
−
(
1− e

−a
(r+α+1)

)(
r+

β

θ

)
+ a− 1

]
.

(3.7)

4. Bayes Estimator of θ under Uniform Prior g3(θ)

The posterior pdf under g3(θ) may be obtained as

f(θ|x) =
T r−1r θ−re−Tr/θ

Ig
(
Tr
α , r − 1

)
− Ig

(
Tr
β , r − 1

) , (4.1)

where Ig(x, n) =

∫ x

0
e−ttn−1 is the incomplete gamma function.

The Bayes estimator under SELF is given by

θ̂S =




Ig
(
Tr
α , r − 2

)
− Ig

(
Tr
β , r − 2

)

Ig
(
Tr
α , r − 1

)
− Ig

(
Tr
β , r − 1

)



Tr. (4.2)

The Bayes estimator of θ under linex loss function, say θ̂A, is given by

ea
Ig
(
Tr
α , r

)
− Ig

(
Tr
β , r

)

Ig

(
Tr−aθ̂A

α , r
)
− Ig

(
Tr−aθ̂A

β , r
) =

(
Tr

Tr − aθ̂A

)r
(4.3)

In this case risk functions cannot be obtained in a closed form.
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5. The Comparison and Recommendation

It is evident from the equations (2.2),(2.3),(3.2),(3.3),(4.2) and (4.3) that
Bayes estimators of the shape parameter of the finite range distribution, under
squared error, linex loss functions using quasi, natural conjugate and uniform
priors, have different expressions for their definitions. The Bayes estimators do
depend upon the parameters of the prior distributions.

In figure-l we have plotted the risk functions B1 and B2, of the Bayes es-
timators θ̂S and θ̂A respectively, under squared error loss function, as given in
equation (2.4) and (2.5) for a = 1, r = 5(5)20 and d = 0.5(0.5)5.0.

In figure-2 we have plotted the risk functions C1 and C2, of the Bayes es-
timators θ̂S and θ̂A respectively, under linex loss function, as given in equation
(2.6) and (2.7) for a = 1, r = 5(5)20 and d = 0.5(0.5)5.0.

From figure-l and 2 it is clear that neither of the estimators uniformly dom-
inates the other.
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