South East Asian J. Math. \& Math. Sc.
Vol. 2 No.1(2003), pp.75-80

PROBLEMS ON FUNCTIONS OF BOUNDED BOUNDARY AND RADIAL ROTATIONS

Susheel Chandra

Department of Applied Sciences
M. M. M. Engineering College, Gorakhpur-273010, India
(Received: August 29, 2003; Submitted by R.C. Srivastava)
Abstract: Coefficient problems related to the functions of bounded boundary and radial rotaions in the unit disc have been obtained.

Keywords and Phrases: Bounded variation, starlike, convex, close-to-convex

1. Introduction

Let $B V[0,2 \pi]$ be the class of all real valued functions and of bounded variations in $[0,2 \pi]$. We denote V_{k}, the set of functions,

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are regular in $D=\{z:|z|<1\}$ and satisfy

$$
\begin{equation*}
f^{\prime}(z)=\exp \left\{\frac{1}{\pi} \int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right)^{-1} d u(t)\right\} \tag{1.2}
\end{equation*}
$$

where $u(t) \in B V[0,2 \pi]$ with

$$
\begin{equation*}
\int_{0}^{2 \pi} d u(t)=2 \pi, \quad \int_{0}^{2 \pi}|d u(t)| \leq k \pi \tag{1.3}
\end{equation*}
$$

Similarly, we denote R_{k}, the class of functions $f(z)$ of the form (1.1) which are regular in D and satisfy

$$
\begin{equation*}
f(z)=z \exp \left\{\frac{1}{\pi} \int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right)^{-1} d u(t)\right\} \tag{1.4}
\end{equation*}
$$

where $u(t) \in B V[0,2 \pi]$ and satisfies (1.3).
Goodman [1] and Umezava [4] have defined multivalently convex, starlike and close-to-convex functions which are regular in D.

Taking into account the properties of the multivalently convex and starlike functions in D, we discuss some properties of certain classes of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \tag{1.5}
\end{equation*}
$$

which are regular in D (p is a positive integer).
Let $w=f(z)$ of the form (1.5) be a regular function in D with $f^{\prime}(z) \neq 0$ for $0<|z|<1$. Let C_{r} be the image of $|z|=r(0<r<1)$ under the mapping $f(z)$. If C_{r} has boundary rotation atmost $p k \pi$ then $f(z)$ will be called a function of bounded boundary rotation of type p. It is clear that $k \geq 2$.

Similarly, Let C_{r}^{\prime} denotes the image of $|z|=r$ under the mapping $f(z)$ of the form (1.5) which is regular in D. If C_{r}^{\prime} has radial rotation atmost $k p \pi$, then $f(z)$ will be called a function of bounded radial rotation of type p.

From above discussions we now define by $V_{k, p}, k \geq 2$, the class of all functions $f(z)$ of the form (1.5) which are regular in D with $f^{\prime}(z) \neq 0$ in $0<|z|<1$, and having the boundary rotation atmost $k p \pi$ of type p. A function $f(z)$ given by (1.5) belongs to $V_{k, p}$, if and only if, $f^{\prime}(z) \neq 0$ for $0<|z|<1$, and with $z=r e^{i \theta}$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| d \theta \leq k p \pi \tag{1.6}
\end{equation*}
$$

Equivalently as done by Paatero [3] for the class V_{k}, it can be easily shown that $f(z) \in V_{k, p}$, if and only if, there exists a function $u(t) \in B V[0,2 \pi]$ satisfying

$$
\begin{equation*}
\int_{0}^{2 \pi} d u(t)=2 \pi p, \quad \int_{0}^{2 \pi}|d u(t)| \leq k p \pi \tag{1.7}
\end{equation*}
$$

and such that

$$
\begin{equation*}
f^{\prime}(z)=p z^{p-1} \exp \left\{\frac{1}{\pi} \int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right)^{-1} d u(t)\right\} \tag{1.8}
\end{equation*}
$$

Similarly for fixed $k \geq 2$, let $R_{k, p}$ denote the class of functions $f(z)$ of the form (1.5) which are regular and $f(z) / z^{p} \neq 0$ in D with radial rotation atmost $k p \pi$ of type p. A function $f(z)$ given by (1.5) belongs to $R_{k, p}$, if and only if $f(z) \neq 0$ in $0<|z|<1$, and with $z=r e^{i \theta}$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| d \theta \leq k p \pi \tag{1.9}
\end{equation*}
$$

It can be easily shown that $f(z) \in R_{k, p}$, if and only if there exists a function $u(t) \in B V[0,2 \pi]$ satisfying the conditions (1.7) and such that

$$
\begin{equation*}
f(z)=z^{p} \exp \left\{\frac{1}{\pi} \int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right)^{-1} d u(t)\right\} \tag{1.10}
\end{equation*}
$$

Let $V_{k, p}(q, \alpha)$ and $R_{k, p}(q, \alpha)$ are classes of functions $f(z)$ of the forms

$$
\begin{equation*}
f^{\prime}(z)=p z^{p-1} \exp \left\{\frac{(p-\alpha)}{p q \pi} \int_{0}^{2 \pi} \log \left(1-z^{q} e^{-i q t}\right)^{-1} d u(t)\right\} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z)=z^{p} \exp \left\{\frac{(p-\alpha)}{p q \pi} \int_{0}^{2 \pi} \log \left(1-z^{q} e^{-i q t}\right)^{-1} d u(t)\right\} \tag{1.12}
\end{equation*}
$$

respectively, where $0 \leq \alpha<p$ and $u(t)$ satisfies the condition (1.7), and both p and q are positive integers.

It is easy to show that $f(z) \in V_{k, p}(q, \alpha)$ if and only if $g(z) \in R_{k, p}(q, \alpha)$ where

$$
\begin{equation*}
g(z)=\frac{z f^{\prime}(z)}{p} \tag{1.13}
\end{equation*}
$$

In this paper we have solved a coefficient problem for the class $R_{k, p}(q, \alpha)$. On the basis of identification given by (1.13), we can obtain similar result for $V_{k, p}(q, \alpha)$.

2. Main Results

Noonan [2] has solved the following coefficient problem for the class V_{k}.
Theorem [2]. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in V_{k}$ and $F_{k}(z)=z+\sum_{n=2}^{\infty} A_{n}(k) z^{n}$ be given by

$$
F_{k}(z)=\frac{1}{k}\left\{\frac{(1+z)^{k / 2}}{(1-z)^{k / 2}}-1\right\}
$$

Then for $n \leq\left[\frac{k+6}{4}\right]$, we have $\left|a_{n}\right| \leq\left|A_{n}(k)\right|$ with equality for any $n \leq\left[\frac{k+6}{4}\right]$, if and only if, $f(z)=z^{-i \theta} F_{k}\left(z e^{i \theta}\right)$ for some $\theta \in[0,2 \pi]$.

In this paper we extend this result to the class $R_{k}(q, \alpha)$. To prove our main result we need the following lemmas.
Lemma 2.1. $f(z) \in R_{k, p}(q, \alpha)$, if and only if, there exists $s_{1}(z)$ and $s_{2}(z) \in R_{2,1}(q, 0)$ such that

$$
f(z)=z^{p} \frac{\left[s_{1}(z) / z\right]^{(k+2)(p-\alpha) / 4}}{\left[s_{2}(z) / z\right]^{(k-2)(p-\alpha) / 4}}
$$

Lemma 2.2. Let $s(z) \in R_{2,1}(q, 0)$ and $B>0$. Take $g(z)=(s(z) / z)^{-B}=$ $1+\sum_{n=1}^{\infty} b_{n q} Z^{n q}$. Then for $B-(n-1) q \geq 0$.

$$
\begin{equation*}
\left|b_{n q}\right| \leq \frac{2 B(2 B-q)(2 B-2 q) \cdots\{2 B-(n-1) q\}}{q^{n}(n)!}, \quad n=1,2 \cdots \tag{2.1}
\end{equation*}
$$

and also for $B-q \geq 0$,

$$
\begin{equation*}
\left|b_{n q}\right| \leq \frac{2 B(3 q-2 B)(6 q-2 B) \cdots\{3(n-1) q-2 B\}}{(n)!q^{n}}, \quad n=2,3 \cdots \tag{2.2}
\end{equation*}
$$

and $\left|b_{1 q}\right| \leq \frac{2 B}{q}$.
Lemma 2.3. Let $s(z) \in R_{2,1}(q, 0)$ and $\alpha>0$. Take $g(z)=(s(z) / z)^{\alpha}=1+$ $\sum_{n=1}^{\infty} b_{n q} z^{n q}$.
Then

$$
\left|b_{n q}\right| \leq \frac{2 \alpha(2 \alpha+q)(2 \alpha+2 q) \cdots\{2 \alpha-(n-1) q\}}{q^{n}(n)!}, \quad n=1,2 \cdots
$$

Lemma 2.1 follows from (1.12).
Proof of Lemma 2.2. Let P_{q} be the class of the functions

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n q} z^{n q}
$$

which are regular and $\operatorname{Re} p(z)>0$ in D.
Since $g(z)=(s(z) / z)^{-B}$, we have

$$
\begin{equation*}
1-\frac{z g^{\prime}(z)}{B g(z)}=z \frac{s^{\prime}(z)}{s(z)} \tag{2.3}
\end{equation*}
$$

and $p(z)=1-\frac{z g^{\prime}(z)}{B g(z)} \in P_{q}$ as $s(z) \in R_{2,1}(q, 0)$ (a sub class of starlike functions).
Hence $[p(z)]^{-1}=1+\sum_{m=1}^{\infty} u_{m q} z^{m q}$ also belongs to P_{q}. From (2.3) we have

$$
\begin{equation*}
(p(z))^{-1}\left[B q(z)-z g^{\prime}(z)\right]=B g(z) \tag{2.4}
\end{equation*}
$$

By equating the coefficient $z^{n q}$ in the above relation we have

$$
\begin{equation*}
n q b_{n q}=\sum_{m=0}^{n-1}(B-m q) b_{m q} u_{(n-m) q} \tag{2.5}
\end{equation*}
$$

Case I. Let $(n-1) q \leq B$. Applying induction argument and using the fact that $\left|u_{m q}\right| \leq 2$, we get the required result.
Case II. Let $q \geq B$. It follows that $(n-1) q \geq B, n=2,3, \cdots$.
We can write (2.5) as follows:

$$
n q b_{n q}=B u_{n q}-\sum_{m=0}^{n-1}(m q-B) b_{m q} u_{(n-m) q} .
$$

Again by using induction argument we get (2.2).
Proof of Lemma 2.3. Follows as above.
Theorem 2.1. Let $f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n q}+p z^{n q+p}$ and let $F_{k}(z)=z^{p}+\sum_{n=1}^{\infty} A_{n q+p} z^{n q+p}$ be given by

$$
\begin{equation*}
F_{k}(z)=\frac{z^{p}\left(1+z^{q}\right)^{(k-2)(p-\alpha) / 2 q}}{\left(1-z^{q}\right)^{(k+2)(p-\alpha) / 2 q}} \tag{2.6}
\end{equation*}
$$

Then for $(n-1) q \leq \frac{(k-2)(p-\alpha)}{4}$, we have $\left|a_{n q+p}\right| \leq\left|A_{n q+p}\right|$ and result is sharp. Again for $q \geq \frac{(k-2)(p-\alpha)}{4}$,
$\left|a_{n q+p}\right| \leq \sum_{j=0}^{n}\left[\frac{(k+2)(p-\alpha)\{(k+2)(p-\alpha)+1.2 q\}\{(k+2)(p-\alpha)+2.2 q\} \cdots}{2^{j} q^{j}(j)!}\right.$
$\left.\frac{\{(k+2)(p-\alpha)+2(j-1) q\} 2 B^{\prime}\left(2.3 q-2 B^{\prime}\right)\left(2.6 q-2 B^{\prime}\right) \cdots\left\{2.3(n-j-1)-2 B^{\prime}\right\}}{2^{n-j} q^{n-j}(n-j)!}\right]$
where $B^{\prime}=(k-2)(p-\alpha) / 2$.
Proof. Let $f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n q+p} z^{n q+p} \in R_{k, p}(q, \alpha)$, then from Lemma 2.1 we have

$$
f(z)=\frac{z^{p}\left\{S_{1}(z) / z\right\}^{(k+2)(p-\alpha) / 4}}{\left\{S_{2}(z) / z\right\}^{(k-2)(p-\alpha) / 4}}
$$

where $S_{1}(z)$ and $S_{2}(z) \in R_{2,1}(q, 0)$. Let $\left[S_{1}(z) / z\right]^{(k+2)(p-\alpha) / 4}=\sum_{j=0}^{\infty} C_{j q} z^{j q}$ and $\left[S_{2}(z) / z\right]^{-(k-2)(p-\alpha) / 4}=\sum_{j=0}^{\infty} B_{j q} z^{j q}$.

Therefore, $f(z)=z^{p}\left(\sum_{j=0}^{\infty} C_{j q} z^{j q}\right)\left(\sum_{s=0}^{\infty} B_{s q} z^{s q}\right)$.
Equating the coefficient of $z^{n q+p}$, we get

$$
a_{n q+p}=\sum_{j=0}^{n} C_{j q} B_{(n-j) q}
$$

Using (2.1) of Lemma 2.2 and Lemma 2.3, we have

$$
\begin{gather*}
\left|a_{n q+p}\right| \leq \sum_{j=0}^{n}\left[\frac{(k+2)(p-\alpha)\{(k+2)(p-\alpha)+1.2 q\}\{(k+2)(p-\alpha)+2.2 q\} \cdots}{2^{j} q^{j}(j)!}\right. \\
\frac{\{(k+2)(p-\alpha)+2(j-1) q\}(k-2)(p-\alpha)\{(k-2)(p-\alpha)-1.2 q\}}{2^{n-j}} \\
\left.\frac{\{(k-2)(p-\alpha)-2.2 q\}\{(k-2)(p-\alpha)-2(n-j-1) q\}}{q^{n-j}(n-j)!}\right] \tag{2.8}
\end{gather*}
$$

with $(n-1) q \leq \frac{(k-2)(p-\alpha)}{4}$. It can be seen that $\left|A_{n q+p}\right|$ is equal to the value of R.H.S of (2.8). The sharpness of the result is followed from the fact that $F_{k}(z) \in R_{k, p}(q, \alpha)$.

Again if we take $q \geq \frac{(k-2)(p-\alpha)}{4}$, it follows that $(n-1) q \geq \frac{(k-2)(p-\alpha)}{4}$ for $n=2,3 \cdots$. (2.7) follows as above by using (2.2) of Lemma 2.2. This completes the proof of the Theorem.

With the relationship between $V_{k, p}(q, \alpha)$ and $R_{k, p}(q, \alpha)$ given by (1.13), we can also get coefficient problem for the class $V_{k, p}(q, \alpha)$ similar to those given in Theorem 2.1.

References

[1] Goodman, A. W., On the Schwarz-Christoffel Transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1948), 204-223.
[2] Noonan, J. W., Coefficient of function with bounded boundary rotaions, Proc. Amer. Math. Soc. 29 (1971), 307-312.
[3] Paatero, V., Über die konforme Abbildungen von Gebiesten deren Räden von beschränkster Drehing sind., Ann. Acad. Sci. Fenn Ser. A 33(9) (1931).
[4] Umezava, T., Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 867-874.

