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Abstract: In this paper, we have defined the growth (order and type) of complex
double sequences analogous to the respective definitions in the theory of integral
functions represented by double Dirichlet series with fixed sequences {λm} and
{µn} of exponents. We have considered a class P of entire double Dirchlet se-
quences (EDDS) and have examined their growth properties. Distribution of
elements of P over the universal set U of all EDDS has been investigated and has
been depicted by Venn diagram.

1. Introduction

Let {λm} and {µn} be strictly increasing and divergent sequence of positive
reals satisfying

lim
m→∞

logm

λm
= 0 = lim

n→∞

logn

µn
(1.1)

A double Dirichlet series f(s1, s2) =
∑
amn e

s1λm+s2µn represents an entire
function if

lim
m+n→∞

log |amn|

λm + µn
= −∞ (1.2)

Throughout this paper, any complex sequence satisfying (1.2) will be called
an entire double Dirichlet sequence (EDDS, in short).

The Ritt order, or simply order, ρ(f ) of the entire Dirichlet series
f(s) =

∑
ane

sλn is defined as

ρ(f) = lim
σ→∞

sup
log logM(σ, f)

log σ

where

M(σ, f) =
1.u.b.

−∞ < t <∞ |f (σ + it)|
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A necessary and sufficient condition that f(s) be of finite Ritt order ρ(f) is
that

ρ(f) = lim
n→∞

sup
λn logλn
log |an|−1

The type τ(f ) of an entire Dirichlet series f(s) of finite order ρ is defined as

τ(f) = lim
σ→∞

sup
logM(σ, f)

eσρ

A necessary and sufficient condition for this is

τ(f) = lim
n→∞

sup
λn

eρ
|an|

ρ

λn

Analogous to these characterizations of order and type of entire functions
represented by Dirichlet series, we define order and type of entire double Dirichlet
sequences as follows:

A double sequence f = {fmn} will be said to of order ρ if

ρ = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log |fmn|−1
(1.3)

A double sequence f = {fmn} of order ρ (0 < ρ < ∞) will be said to be of
type τ if

τ =
1

eρ
lim

m+n→∞
sup

[
(λm + µn) |fmn|

ρ

(λm+µn)

]
. (1.4)

Let P be a class of EDDS defined as

P =

{
f = {fmn}; (λm + µn) |fmn|

1
(λm+µn) is bounded

}

Obviously, P is a subset of the universal set of U of all EDDS. Let us denote
by R0, R1 and R the subclasses of U consisting of EDDS with order ρ < 1, ρ = 1
and ρ ≤ 1, respectively. Similarly, we denote by T0, T1 and T the subclasses of
U consisting of all EDDS with type τ < 1 τ = 1 and τ ≤ 1, respectively. Ac will
denote the complement of A in U , i.e.,

Ac = U −A

Clearly,
R0 ∪R1 = R;T0 ∪ T1 = T ;
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R1 ∩R0 = φ, T0 ∩ T1 = φ;

2. Growth Properties of Elements of P

We first note that if f is any arbitrary element of P then by equation (1.3)

ρ(f ) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log |amn|−1

≤ lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log

{(
λm+µn
K

)(λm+µn)
} = 1.

This implies that order of every element of P is less than or equal to 1. let
us denote by P0 and P1 the subsets of P containing elements of order < 1 and
=1, respectively. Thus,

R0 ∩ P = P0 and R1 ∩ P = P1.

Theorem 2.1. R0 ⊂ P ⊂ R; the set inclusions being proper.

Proof. Let g = {gmn} be an arbitrary element of R0. Then

ρ(g) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log |gmn|−1
= r < 1

There exist N such that

(λm + µn) log(λm + µn)

log |gmn|−1
< r whenever m+ n ≥ N

Thus,
|gmn| < (λm + µn)

−(λm+µn) [r < 1]

(λm + µn)|gmn|
1

λm+µn r < 1

Hence g ∈ P .

Thus R0 ⊆ P. (2.1)

By definition, it is clear that

P ⊆ R. (2.2)
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From equation (2.1) and (2.2), we have

R0 ⊆ P ⊆ R.

That the set inclusions are proper will be evident by the Examples 3.3 and
4.4 given in sections 3 and 4, respectively.

Hence the theorem.

Corollary 2.1. R0 = P0

3. Certain Examples in P

Before proving further results about the growth properties of elements of P ,
let us first enlist a few important elements of P , which will be referred to quite
frequently. In this section we define various elements of P and investigate their
growth.

Example 3.1. Consider the elements a = {amn} of P such that

amn =

(
1 + 1

m+n

)(m+n)(λm+µn)/t

(λm + µn)(λm+µn)/t
; 0 < t < 1.

Obviously a ∈ P, ρ(a) = t < 1, τ(a) = 1
t > 1; ∀ 0 < t < 1. In other words

a ∈ P0 ∩ T
c.

Example 3.2. Consider the elements b = {bmn} such that

bmn =

(
1 +

1

λm + µn

)λm+µn
.

Note that b ∈ P , since ∀ m,n

(λm + µn)|bmn|
1

λm+µn = 1.

Now order of b is

ρ(b) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log |bmn|−1
= 1

and type of b is

τ(b) =
1

eρ
lim

m+n→∞
sup

[
(λm + µn)|bmn|

ρ

λm+µn

]
=

1

e
< 1.
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Thus b ∈ P and ρ(b) = 1, τ(b) =
1

e
< 1 in other words b ∈ P1 ∩ T0.

Example 3.3. Consider the element c = {cmn} such that

cmn =

(
e2

λm + µn

)λm+µn
.

Note that c ∈ P , since

(λm + µn)|cmn|
1

(λm+µn) = e2.

Also

ρ(c) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

log |cmn|−1
= 1

and

τ(c) =
1

eρ
lim

m+n→∞
sup

[
(λm + µn)|cmn|

ρ
λm+µn

]
= e > 1.

Thus c ∈ P and ρ(c) = 1, τ(c) = e > 1. In other words c ∈ P1 ∩ T
c.

Example 3.4. Consider the element d = {dmn} such that

dmn =

(
1

λm + µn

)e(λm+µn)
.

Note that d ∈ P since

(λm + µn)|dmn|
1

λm+µn = (λm + µn)
1−e → 0 as m+ n→∞.

order of d is

ρ(d) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

e(λm + µn) log(λm + µn)
=

1

e
< 1

and type of d is

τ(d) = lim
m+n→∞

sup

[
(λm + µn)

(
1

λm + µn

)]
= 1.

Thus d ∈ P and ρ(d) =
1

e
< 1, τ(d) = 1. In other words d ∈ P0 ∩ T1.
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Example 3.5. Consider the element i = {imn} of P such that

imn =

(
e

λm + µn

)λm+µn
.

Firstly we show that i ∈ P . For this, we note that

(λm + µn)|imn|
1

λm+µn = e.

Now order of i is

ρ(i) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)

(λm + µn) log
(
λm+µn)

e

) = 1

Further

τ(i) =
1

e
lim

m+n→∞
sup

[
(λm + µn)

∣∣∣∣

(
e

λm + µn

)∣∣∣∣

]
= 1.

Thus i ∈ P and ρ(i) = 1, τ(i) = 1. In other words i ∈ P1 ∩ T1.

Example 3.6. Consider the element jt = {j
(t)
mn}

where

j(t)mn = (λm + µn)
−(λm+µn)/t; 0 < t < 1

Firstly we shall show that jt ∈ P . For this, we note that

(λm + µn)|j
(t)
mn|

1
λm+µn = (λm + µn)

1− 1
t → 0 as m+ n→∞ [0 < t < 1]

Now order of jt is

ρ(jt) = lim
m+n→∞

sup
(λm + µn) log(λm + µn)
(λm+µn)

t log(λm + µn)
= t < 1

and type

τ(jt) =
1

et
lim

m+n→∞
sup

[
(λm + µn)

∣∣∣(λm + µn)
−1
∣∣∣
]
=

1

et
.

Case I. If 0 < t < 1
e
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In this case, order of jt is

ρ(jt) = t <
1

e
< 1

and type of jt is

τ(jt) =
1

et
> 1

Therefore, in this case, jt ∈ P0 ∩ T
c.

Case II. If t =
1

e

In this case, order of jt is

ρ(jt) = t =
1

e
< 1

and type of jt is

τ(jt) =
1

et
= 1

Therefore, in this case, jt ∈ P0 ∩ T1.

Case III. If
1

e
< t < 1

In this case,
ρ(jt) = t < 1

and

τ(jt) =
1

et
< 1

Therefore, in this case, jt ∈ P0 ∩ T0.

4. Certain Examples in P c

In this section, we define certain elements of U , which are not members of
P . These elements form certain counter examples, which help us in studying the
distribution of elements of U into various subclasses of U defined earlier.

Example 4.1. Consider the element u = {umn} such that

umn =

(
e2

λm + µn

)λm+µn
e
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Note that u ∈ U , since

lim
m+n→∞

log |umn|

λm + µn
= lim
m+n→∞

1

e
[2 log e− log(λm + µn)]

= −∞ [as m+ n→∞, λm + µn →∞]

Now order of u is

ρ(u) = lim
m+n→∞

sup
e

1− 2 log e
log(λm+µn)

= e > 1

This also show that u �∈ P .

also type of u is

τ(u) =
1

e2
lim

m+n→∞
sup

[

(λm + µn)
e2

λm + µn

]

= 1.

Thus u �∈ P and ρ(u) = e > 1, τ(u) = 1. In other words u ∈ Rc ∩ T1.

Example 4.2. Consider the element v = {vmn}, such that

vmn =

(
e

λm + µn

)K′(λm+µn)

; K ′ < 1

Also v ∈ U , since

lim
m+n→∞

log |vmn|

λm + µn
= lim
m+n→∞

K ′[log e− log(λm + µn)]

= −∞ [as m+ n→∞, λm + µn →∞]

The order of v is

ρ(v) =
1

K ′
lim

m+n→∞
sup

log(λm + µn)

log(λm + µn)
[
1− log e

log(λm+µn)

] =
1

K ′
> 1 [K ′ < 1]

Hence v �∈ P .

Type of v is

τ(v) =
K′

e
lim

m+n→∞
sup

[
(λm + µn)

(
e

λm + µn

)]
= K ′ < 1
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Thus v �∈ P and ρ(v) =
1

K ′
> 1, τ(v) = K ′ < 1. In other words, v ∈ Rc∩T0.

Example 4.3. Consider the element w = {wmn} such that

wmn =

(
e3

λm + µn

) (λm+µn)
e

Note that, w ∈ U , since

lim
m+n→∞

log |wmn|

λm + µn
= lim
m+n→∞

1

e
[3 log e− log(λm + µn)]

= −∞ [as m+ n→∞, λm + µn →∞]

Now order of w is

ρ(w) = lim
m+n→∞

sup
e

1− 3 log e
log(λm+µn)

= e > 1

Which also show that w �∈ P .

Type of w is

τ(w) =
1

e2
lim

m+n→∞
sup

[

(λm + µn)
e3

λm + µn

]

= e > 1.

Thus w �∈ P and ρ(w) = e > 1, τ(w) = e > 1. In other words w ∈ Rc ∩ T c.

Example 4.4. Consider the element x = {xmn} such that

xmn =

[
log(λm + µn)

λm + µn

]λm+µn

Firstly we shall show that x �∈ P . For this, we note that

(λm + µn)|xmn |
1

λm+µn = log(λm + µn) which is unbounded

Also that, x ∈ U , since

lim
m+n→∞

log |xmn|

λm + µn
= lim
m+n→∞

log

[
log(λm + µn)

λm + µn

]

= −∞ [as m+ n→∞, λm + µn →∞]
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Now order of x is

ρ(x) = lim
m+n→∞

sup
1

1− log log(λm+µn)
log(λm+µn)

= 1

and type of x is

τ(x) =
1

e
lim

m+n→∞
sup log(λm + µn) > 1.

Thus x �∈ P and ρ(x) = 1, τ(x) > 1. In other words x ∈ R1 ∩ P c ∩ T c.

5. Distribution Of P0 and P1 Over U

In this section, we investigate the distribution of P0 and P1 over various
subsets of U viz. R0, R1, R and T0, T1, T defined in section 2. We shall
make full use of examples of elements in P and P c established in section 3 and 4
respectively for this purpose.

Theorem 5.1.

(i) P1 is not a subset of T .

(ii) R1 ∩ T0 is a proper subset of P , hence of P1.

Proof.

(i) The sequence ‘c’ of Example 3.3 is an element of P whose order is 1 and type
is greater than 1. Thus ‘c’ is an element of P1 but not of T .

(ii) Let f be an arbitrary element of R1 ∩ T0

⇒ ρ(f) = 1 and τ(f) < 1

Therefore, for some r, 0 < r < 1, we can find N such that,

1

eρ

[
(λm + µn) |amn|

ρ

λm+µn

]
< r; ∀ m+ n ≥ N

⇒ (λm + µn) |amn|
1

λm+µn < r.e; ∀ m+ n ≥ N

where 0 < r < 1, 2 < e < 3

⇒ f ∈ P.

Further, since R1 ∩ P = P1, R1 ∩ T0 is also a suubset of P1.
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To complete the proof, note that the sequence

i = {imn}

of Example 3.5 is a member of P , which does not belong to T0 [because τ(i) < 1]
and hence i �∈ R1 ∩ T0.

Thus R1 ∩ T0 is a proper subset of P , hence of P1.

In order to give a complete Venn-diagram about various subsets of U , it
remains to be checked whether elements of U with order one and type one belong
necessarily to P or not.

Theorem 5.2.

R1 ∩ T1 is a proper subset of P hence of P1.

Proof.

Let k = {kmn} be an element of U , whose order ρ(k) = 1 and type τ(k) = 1.

we know that

τ(k) =
1

eρ
lim

m+n→∞
sup

[
(λm + µn) |kmn|

ρ

λm+µn

]

1 =
1

e
lim

m+n→∞
sup

[
(λm + µn) |kmn|

1
λm+µn

]

or,

lim
m+n→∞

sup(λm + µn) |kmn|
1

λm+µn = e

This implies that k = {kmn} ∈ P .

Hence R1 ∩ T1 is a subset of P and hence of P1. Further note that the
sequence c of Example 3.3 is an element of P whose order 1 and type is e > 1.
Thus c ∈ P1 but c �∈ R1 ∩ T1.

Hence R1 ∩ T1 is a proper subset of P and hence of P1.

With the help of examples of section 3 and counter examples of section 4,
the distribution of different entire double Dirichlet sequences in various classes of
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U is tabulated in the following Table:
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TABLE

Sequence Example Whether Order (ρ) Type (τ) Position of

Number belongs of sequence of sequence sequence in

to P or Not Ven diagram

a 3.1 Yes ρ < 1 τ > 1 P0 ∩ T
c

b 3.2 Yes ρ = 1 τ = 1
e
< 1 P1 ∩ T0

c 3.3 Yes ρ = 1 τ = e > 1 P1 ∩ T
c

d 3.4 Yes ρ = 1
e
< 1 τ = 1 P0 ∩ T1

i 3.5 Yes ρ = 1 τ = 1 P1 ∩ T1
jt; 0 < t < 1

e
3.6 (case I) Yes ρ = t < 1

e
< 1 τ = 1

et
< 1 P0 ∩ T

c

jt; t =
1
e

3.6 (case II) Yes ρ = t = 1
e
< 1 τ = 1

et
= 1 P0 ∩ T1

jt; 1
e
< t < 1 3.6 (case III) Yes ρ = t < 1 τ = 1

et
< 1 P0 ∩ T0

u 4.1 No ρ = e > 1 τ = 1 Rc ∩ T1
v 4.2 No ρ > 1 τ < 1 Rc ∩ T0
w 4.3 No ρ = e > 1 τ = e > 1 Rc ∩ T c

x 4.4 No ρ = 1 τ > 1 R1 ∩ P
c
∩ T c

All the above results can also be complied into the Venn diagram page 42,
common boundaries in the diagram should essentially be considered as empty
sets. All the sets are given rectangular shapes, labelled at the corners of the
principal diagonal.

Acknowledgements

This paper is a part of the Ph.D. dissertation of the author. Author is grate-
ful to Prof. Rajiv K. Srivastava for his valuable suggestions and kind guidance
throughout this work.

References

[1] Ritt, J. F., On certain points in the theory of Dirichlet series, Amer. J.
Math., 50 (1928), 73-86.

[2] Yu, C. Y., Sur les droites de Borel de certain fonctions entires, Ann. Sci.
Ecole. Norm. Sup., 68 (1951), 65-104.

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com


