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1. Introduction :

Let o denote the set of all real or complex sequences X =(x, ) and M :[0,00) —>[0,00) be an
orlicz function (or) a modulus function.

An orlicz function is continuous, non-decreasing and convex with
M(@0) =0, M(x)>0 for x>0 and M(x) >o as x—o0

Nakano introduced “Modulus function” if the convexity of orlicz function is replaced by
M(x+y) <M(x)+M(y)

Lindenstraus and Tzafari used the idea of orlicz function to orlicz sequence space

2y z{xea);iM(M]<oo, for somep>0}

k=1 P

The space ¢,, with the norm,

=il o ()

1. Definition :

Let 7, c, ¢ be the sequence spaces of bounded ,convergent and null sequence X = (Xk)

su
respectively. In respect of ¢, ¢, ¢, we have Hxﬂ = kp‘xk , where x=(x, ) ec, <c</_.
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2.1 Definition :
L .. sup .
A sequence X = (Xk) is said to be analytic if K ‘Xk‘ <o0. The vector space of all analytic

sequence will be denoted by A .

2.2 Definition :

0.The vector space of all entire

: : N
A sequence X = (Xk) is called entire sequence if ‘Xk‘ k=
k >

sequence will be denoted by T".

2.3 Definition : .
Let y be the set of all sequences x= {Xk} such that (k!= ‘xk‘)E —0 as k—oo. The metric d on

x 1is defined by
su ]
d(x,y)= kp {(k!\xk - yk\)A; k=123,...... }

2.4 Definition :

A semi norm p, on a linear space x , is a function p: X — R such that
(1) p(Ax)=|A|p(x)
(2) p(x+y)<p(x+y)

Property 1 is called absolute homogeneity of p , and property 2 is called subadditivity of p.
(1) Thus, a seminorm is a real, subadditivity , absolute homogeneous function on y .
Moreover by (1) and (2)
0=p(0) < p(x)+ p(—x) =2p(x), where p is always non-negative.
2.5 Definition :

Frechet space can be defined in two ways. The first employs a translation — invariant metric and
the second a countable family of seminorms.

A topological vector space x is a Frechet space if and only if it satisfies the following three
properties:

I. TItis locally convex.

II. Its topological can be induced by a translation —invariant metric (ie) a metric d : X x X—R
Such that d(X,y) =(x+a,y+a) for all a X,y e X.This means that a subset U of X is
open if and only if for every u in U there exists an
e>0. suchthat {V;d(u,v) <e} isa subsetof U

II. Any translation —invariant metric inducting the topology is complete, is other words , is a
complete topological vector space.
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2.6 Definition :

The orlicz space of y” is denoted as y,; and defined as

v
lim !
Av =X E®; M KX >0 for some p>0
k — o P,
The space y,, is a metric space with the metric,
%

su Ix, —v, |’k
d(x,y) =inflp> 0P M| KRN <1l

k p|l

2.7 Definition :

The Orlicz space of " (p)is denoted by yy; (p) and defined as,

y Px
r lim k! Xy K
Zm (P) = XZ(Xk); M| —|— =0, for some p>0
k — o0 plm,
The metric of the space is defined as,
yk Px
su Hx, — v |
d(x,y) =inf< p > 0; pM EM <1
k pl
Suppose if p, is constant, then yy, (p) = yn
3.1 Theorem:
b
Let 0<a, <b,and let {—k} be bounded .Then 7, (b) = x7 ()
ay
Proof: Let
x € ()
1 b
tim [, |®
= M| —|— =0 - (A
k— o Py

Here 0<a, <b, =0< 2 <]
k

Since M is non-decreasing function,
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s\ b b, a b,
P b N A\
w K | e R D R ] o R
P |7k P17k Pk P |7k
By A, R.H.S tends to zero . Hence
AN
!
LHS, M| M =0
Pk
Which implies xe€ yy,(a) . xy(b) < xy(a)
3.2 Theorem:
If O<infa,<a, <1, then yy(a)c yy-
Proof:
Let
X€ xy(a)
1))
tim [ [l [®
= —|— =0 —»>(B)
k — o0 plm,
Given If O<infa, <a, <1,
K Al
VI LN R PPV SR
Py P |7k
As k — oo , by B ,R.H.S tends to zero, then
lim ! %
LHS, M(5xJﬁJ=o.
k—>o \p
Which implies, xe€ yy. . xy(@) < xy-
3.3 Theorem:
sup . .
If 1<a, < <o then yy cyxl(a)
a'k
Proof:
Let

X € In
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%

lim k!
= M| = =0 —(C)
k — o0 plm,
. sup
Given 1<a, < <o ,we have
ak
Ak b
! !
M| B < v B
P|7x Py

ByC,as k > o, RH.S — o, then

g

li x5

LHs 7w KR ~0
k — o0 plr,

= xeyy(a)

I S 2w (@)
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