Certain results involving Eta-function

Abida Khatoon and *Sonia Badesara
Department of Mathematics,
BBD, Engineering College, Lucknow, (U.P.) India.
*Department of Mathematics, T.D.P.G. College, Jaunpur
(Received November 07, 2012)
Abstract: In this paper, making use of a result due to Denis, Singh and Singh [2], we have established certain results involving Eta-functions.
Keywords: Basic hypergeometric series, basic bilateral hypergeometric series, Eta-function, summation formula, transformation formula.
AMS subject classification code: Primary 33D90, 11A55 ; Secondary 11F20. 1. Introduction, Notations and Definitions:

In this paper we shall establish certain results involving eta-functions. This paper consists of three parts which include results involving eta-functions.
Eta function is defined as,

$$
\begin{equation*}
\eta(z)=e^{\pi i z / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)=q^{\frac{1}{24}}[q ; q]_{\infty}, \tag{1.1}
\end{equation*}
$$

where $q=e^{2 \pi i z}$.
Part - I
We shall be in need of the following known results,

$$
\begin{gather*}
{ }_{2} \Psi_{2}\left[\begin{array}{l}
a q_{1}^{m}, y q_{1}^{m} ; q_{1} ; x q_{1} \\
q_{1}^{1+m}, a y q_{1}^{1+m}
\end{array}\right]{ }_{2} \Phi_{1}\left[\begin{array}{l}
\alpha q, \beta q ; q ; x \\
\alpha \beta q
\end{array}\right] \\
=\frac{[\alpha, \beta ; q]_{m}\left[q_{1}, a y q_{1} ; q_{1}\right]_{m}}{[q, \alpha \beta q ; q]_{m}\left[a, y ; q_{1}\right]_{m}\left(\frac{q}{q_{1}}\right)^{m}} \\
\times_{2} \Psi_{2}\left[\begin{array}{l}
\alpha q^{m}, \beta q^{m} ; q ; x q \\
q^{1+m}, \alpha \beta q^{1+m}
\end{array}\right]{ }_{2} \Phi_{1}\left[\begin{array}{l}
a q_{1}, y q_{1} ; q_{1} ; x \\
a y q_{1}
\end{array}\right], \tag{1.2}
\end{gather*}
$$

[Denis, Singh and Singh 2; (4.4)]
where max $\left(|q|,\left|q_{1}\right|\right)<|x|<1$.

Ramanujan's sum

$$
{ }_{1} \Psi_{1}\left[\begin{array}{l}
a ; q ; z \tag{1.3}\\
b
\end{array}\right]=\frac{\left[q, \frac{b}{c}, a z, \frac{q}{a z} ; q\right]_{\infty}}{\left[b, \frac{q}{a}, z, \frac{b}{a z} ; q\right]_{\infty}}
$$

2. Main Results

In this section we shall establish our main results.
Taking $a=q_{1}, \alpha=q$ in (1.2) and then summing the ${ }_{1} \Psi_{1}$-series of both sides by making use of (1.3), we get

$$
\begin{gather*}
\frac{{ }_{2} \Phi_{1}\left[\begin{array}{l}
q_{1}^{2}, y q_{1} ; q_{1} ; x \\
y q_{1}^{2}
\end{array}\right]}{{ }_{2} \Phi_{1}\left[\begin{array}{l}
q^{2}, \beta q ; q ; x \\
\beta q^{2}
\end{array}\right]} \\
=\frac{\left[x y q_{1}, \frac{1}{x y} ; q_{1}\right]_{\infty}\left[x q, q / x, \beta q^{2}, q / \beta ; q\right]_{\infty}\left[q_{1} ; q_{1}\right]_{\infty}^{2}(1-q)}{\left[x q_{1}, q_{1} / x, q_{1} / y, y q_{1}^{2} ; q_{1}\right]_{\infty}[x \beta q, 1 / x \beta ; q]_{\infty}[q ; q]_{\infty}^{2}\left(1-q_{1}\right)} \tag{2.1}
\end{gather*}
$$

Again taking $y=\frac{1}{q_{1}}, \beta=-\frac{1}{q}$ in (2.1) and making use of definition (1.1), we have

$$
\begin{align*}
\frac{\sum_{n=0}^{\infty} \frac{\left(1-q_{1}^{n+1}\right)}{\left(1+q_{1}^{n}\right)} x^{n}}{\sum_{n=0}^{\infty} \frac{\left(1-q^{n+1}\right)}{1+q^{n}} x^{n}} & =\frac{\left[-x,-q_{1} / x ; q_{1}\right]_{\infty}[x q, q / x ; q]_{\infty}}{\left[x q_{1}, q_{1} / x ; q_{1}\right]_{\infty}[-x,-q / x ; q]_{\infty}} \\
& \times \frac{\eta^{4}\left(z_{1}\right) \eta^{2}(2 z)}{\eta^{2}\left(2 z_{1}\right) \eta^{4}(z)} \tag{2.2}
\end{align*}
$$

where $q_{1}=e^{2 \pi i z_{1}}$ and $q=e^{2 \pi i z}$.
Replacing q, q_{1} by q^{2}, q_{1}^{2} respectively in (2.2) and then putting $x=q_{1}$, we have

$$
\begin{equation*}
\frac{\sum_{n=0}^{\infty} \frac{\left(1-q_{1}^{2 n+2}\right)}{\left(1+q_{1}^{2 n}\right)} q_{1}^{n}}{\sum_{n=0}^{\infty} \frac{\left(1-q^{2 n+2}\right)}{1+q^{2 n}} q_{1}^{n}}=\frac{\left(1-q_{1}\right) \eta^{10}\left(2 z_{1}\right) \eta^{2}(4 z)\left[q_{1} q^{2}, q^{2} / q_{1} ; q^{2}\right]_{\infty}}{\eta^{4}\left(z_{1}\right) \eta^{4}\left(4 z_{1}\right) \eta^{4}(2 z)\left[-q_{1},-q^{2} / q_{1} ; q^{2}\right]_{\infty}} \tag{2.3}
\end{equation*}
$$

Taking $y=\frac{1}{q_{1}}$ in (1.1), we get

$$
{ }_{2} \Phi_{1}\left[\begin{array}{l}
q^{2}, \beta q ; q ; x \tag{2.4}\\
\beta q^{2}
\end{array}\right]=\frac{[x \beta q, 1 / x \beta ; q]_{\infty}[q ; q]_{\infty}^{2}}{(1-q)\left[x, q / x, \beta q^{2}, q / \beta ; q\right]_{\infty}} .
$$

Replacing q by q^{3} and then taking $\beta=q^{-2}$ and $x=-q^{6}$ in (2.4), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(1-q^{3 n+3}\right)(-)^{n} q^{6 n}}{\left(1-q^{3 n+1}\right)}=\left(\frac{1-q^{2}}{2 q^{2}}\right) \frac{\eta^{6}(3 z) \eta(2 z)}{\eta^{2}(z) \eta^{3}(6 z)} . \tag{2.5}
\end{equation*}
$$

Putting $\beta=-\frac{1}{q}$ in (2.4), we have

$$
\begin{equation*}
\frac{2}{1+q} \sum_{n=0}^{\infty}\left(\frac{1-q^{n+1}}{1+q^{n}}\right) x^{n}=\frac{[-x,-q / x ; q]_{\infty}}{[x, q / x ; q]_{\infty}} \frac{\eta^{4}(z)}{\eta^{2}(2 z)} . \tag{2.6}
\end{equation*}
$$

Again, replacing q by q^{2} and then taking $x=q$ in (2.6), we find

$$
\begin{equation*}
\left(\frac{2}{1+q^{2}}\right) \sum_{n=0}^{\infty}\left(\frac{1-q^{2 n+2}}{1+q^{n}}\right) q^{n}=\frac{\eta^{10}(2 z)}{\eta^{4}(z) \eta^{4}(4 z)} . \tag{2.7}
\end{equation*}
$$

A number of other interesting results can also be scored.

3. Part II

In the 'Lost Notebook' of Ramanujan [4], he has mentioned following beautiful theorem If $a, b \neq-q^{-n}$, then

$$
\begin{equation*}
\rho(a, b)-\rho(b, a)=\left(\frac{1}{b}-\frac{1}{a}\right) \frac{[q, a q / b, b q / a ; q]_{\infty}}{[-a q,-b q ; q]_{\infty}}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(a, b)=\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n+1) / 2}(a / b)^{n}}{[-a q ; q]_{n}} . \tag{3.2}
\end{equation*}
$$

4. Main Results

(a) In this section we shall establish results involving eta-functions, let,

$$
\begin{equation*}
F(a, b ; q)=\rho(a, b)-\rho(b, a)=\left(\frac{1}{b}-\frac{1}{a}\right) \frac{[q, a q / b, b q / a ; q]_{\infty}}{[-a q,-b q ; q]_{\infty}} \tag{4.1}
\end{equation*}
$$

(i) Replacing q by q^{2} and then taking $a=-q, b=q$ in (4.1), we get

$$
\begin{equation*}
F\left(-q, q ; q^{2}\right)=\frac{2\left(1-q^{2}\right)}{q^{4 / 3}} \frac{\eta^{3}(4 \zeta)}{\eta^{2}(2 \zeta)} \tag{4.2}
\end{equation*}
$$

(ii) Replacing q by q^{2} and then taking $a=q, b=-q$ in (4.1), we get

$$
\begin{equation*}
F\left(q,-q ; q^{2}\right)=\frac{-2\left(1-q^{2}\right)}{q^{4 / 3}} \frac{\eta^{3}(4 \zeta)}{\eta^{2}(2 \zeta)} \tag{4.3}
\end{equation*}
$$

(iii) Comparing (4.2) and (4.3), we get

$$
\begin{equation*}
F\left(q,-q ; q^{2}\right)=-F\left(-q, q ; q^{2}\right) \tag{4.4}
\end{equation*}
$$

(iv) Taking $a=-q$ and $b=q$ in (4.1), we get

$$
\begin{equation*}
F(-q, q ; q)=\left(\frac{1-q}{2 q}\right) \frac{1}{q^{1 / 24}} \frac{\eta(2 \zeta)}{\eta(\zeta)} \tag{4.5}
\end{equation*}
$$

(v) Replacing q by q^{3} and then taking $a=q$ and $b=q^{2}$ in (4.1), we find

$$
\begin{equation*}
F\left(q, q^{2}, q^{3}\right)=\frac{(1+q)\left(1+q^{2}\right)}{q^{17 / 8}} \frac{\eta^{2}(\zeta) \eta(6 \zeta)}{\eta(2 \zeta) \eta(3 \zeta)} \tag{4.6}
\end{equation*}
$$

(vi) Replacing q by q^{3} and then taking $a=-q$ and $b=-q^{2}$ in (4.1), we find

$$
\begin{equation*}
F\left(-q,-q^{2} ; q^{3}\right)=-\frac{(1-q)\left(1-q^{2}\right)}{q^{17 / 8}} \eta(3 \zeta) \tag{4.7}
\end{equation*}
$$

(vii) Replacing q by q^{4} and then taking $a=-q^{2}$ and $b=q^{2}$ in (4.1), we get

$$
\begin{gather*}
F\left(-q^{2}, q^{2} ; q^{4}\right)=\frac{1}{2 q^{2}} \frac{\left(q^{4} ; q^{4}\right)_{\infty}\left(-q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{6},-q^{6} ; q^{4}\right)_{\infty}} \\
=\frac{\left(1-q^{4}\right)}{2 q^{2}} \frac{\left(q^{8} ; q^{8}\right)_{\infty}^{3}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}} \\
=\frac{\left(1-q^{4}\right)}{2 q^{8 / 3}} \frac{\eta^{3}(8 \zeta)}{\eta^{2}(4 \zeta)} \tag{4.8}
\end{gather*}
$$

(viii) Replacing q by q^{6} and then taking $a=-q^{3}$ and $b=q^{3}$ in (4.1), we obtain

$$
\begin{equation*}
F\left(-q^{3}, q^{3} ; q^{6}\right)=\frac{\left(1-q^{6}\right)}{\left(2 q^{4}\right)} \frac{\eta^{3}(12 \zeta)}{\eta^{2}(6 \zeta)} \tag{4.9}
\end{equation*}
$$

(ix) Replacing q by q^{5} and then taking $a=-q^{2}$ and $b=q^{3}$ in (4.1), we get

$$
\begin{equation*}
F\left(-q^{2},-q^{3} ; q^{4}\right)=-\frac{\left(1-q^{2}\right)\left(1-q^{3}\right)}{\left(q^{3}\right)}\left(q^{5} ; q^{5}\right)_{\infty} \frac{\left(q, q^{4} ; q^{5}\right)_{\infty}}{\left(q^{2}, q^{3} ; q^{5}\right)_{\infty}} \tag{4.10}
\end{equation*}
$$

Now, using [Andrews and Berndt 1; Corollary (6.2.6) p. 153] in (4.10), we get

$$
\begin{equation*}
F\left(-q^{2}, q^{3} ; q^{5}\right)=-\frac{\left(1-q^{2}\right)\left(1-q^{3}\right)}{q^{3}}\left(q^{5} ; q^{5}\right)_{\infty}\left\{\frac{1}{1+} \frac{q}{1+} \frac{q^{2}}{1+} \frac{q^{3}}{1+\ldots}\right\} . \tag{4.11}
\end{equation*}
$$

5. Another form of the function $\rho(a, b)$

Let us consider the Rogers-Fine identity, viz.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(\alpha ; q)_{n}}{(\beta ; q)_{n}} z^{n}=\sum_{n=0}^{\infty} \frac{(\alpha ; q)_{n}(\alpha z q / \beta ; q)_{n} \beta^{n} z^{n}\left(1-\alpha z q^{2 n}\right) q^{n(n-1)}}{(\beta ; q)_{n}(z ; q)_{n+1}} \tag{5.1}
\end{equation*}
$$

[Andrews and Berndt 1; (9.11) p. 223]
Putting z / α for z and then taking $\alpha \rightarrow \infty$ in (5.1), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n-1) / 2} z^{n}}{(\beta ; q)_{n}}=\sum_{n=0}^{\infty} \frac{(-)^{n} q^{3 n(n+1) / 2}(z q / \beta ; q)_{n} \beta^{n} z^{n}\left(1-z q^{2 n}\right)}{(\beta ; q)_{n}} \tag{5.2}
\end{equation*}
$$

Now taking $\beta=-a q$ and $z=a q / b$ in (5.2), we have

$$
\begin{align*}
& \rho(a, b)=\sum_{n=0}^{\infty} \frac{(-1 / b ; q)_{n+1}\left(\frac{a^{2}}{b}\right)^{n} q^{n(3 n+1) / 2}\left(1-\frac{a}{b} q^{2 n+1}\right)}{(-a q ; q)_{n}} \\
& =\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-q / b ; q)_{n}\left(\frac{a^{2}}{b}\right)^{n} q^{n(3 n+1) / 2}\left(1-\frac{a}{b} q^{2 n+1}\right)}{(-a q ; q)_{n}} \tag{5.3}
\end{align*}
$$

which is another form of $\rho(a, b)$.
For $a=b=1$, (5.3) yields,

$$
\begin{equation*}
\rho(1,1)=2 \sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right) . \tag{5.4}
\end{equation*}
$$

For $a=1, b=q$, (5.3) yields,

$$
\begin{equation*}
\rho(1, q)=2\left(1+\frac{1}{q}\right) \sum_{n=1}^{\infty} q^{n(3 n-1) / 2}\left(1-q^{n}\right) . \tag{5.5}
\end{equation*}
$$

For $a=b=q,(5.3)$ yields,

$$
\begin{equation*}
\rho(q, q)=2 \frac{(1+q)^{2}}{q} \sum_{n=0}^{\infty} q^{3 n(n+1) / 2} \frac{\left(1-q^{2 n+1}\right)}{\left(1-q^{n+1}\right)} \tag{5.6}
\end{equation*}
$$

For $a=q, b=1,(5.3)$ yields

$$
\begin{equation*}
\rho(q, 1)=2(1+q) \sum_{n=0}^{\infty} q^{n(3 n+5) / 2}\left(1-q^{n+1}\right) \tag{5.7}
\end{equation*}
$$

From (3.2) and (5.3), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n+1) / 2}}{(-q ; q)_{n}}=\sum_{n=0}^{\infty} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right) \tag{5.8}
\end{equation*}
$$

From (3.2) and (5.5), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n-1) / 2}}{(-q ; q)_{n}}=2 \sum_{n=1}^{\infty} q^{n(3 n-1) / 2}\left(1-q^{n}\right) \tag{5.9}
\end{equation*}
$$

From (3.2) and (5.6), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n+1) / 2}}{(-q ; q)_{n}}=2 \sum_{n=0}^{\infty} q^{3 n(n+1) / 2} \frac{\left(1-q^{2 n+1}\right)}{\left(1-q^{n+1}\right)} \tag{5.10}
\end{equation*}
$$

From (3.2) and (5.7), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n+3) / 2}}{(-q ; q)_{n+1}}=2 \sum_{n=0}^{\infty} q^{n(3 n+5) / 2}\left(1-q^{n+1}\right) \tag{5.11}
\end{equation*}
$$

6. Part III

Further results involving eta functions

In this section we shall make use of the following results due to Ramanujan, If

$$
\rho(a, b, c ; q)=\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(c)_{n}(-)^{n} q^{n(n+1) / 2}\left(\frac{a}{b}\right)^{n}}{[-a q ; q]_{n}(-c / b ; q)_{n+1}}
$$

then

$$
\begin{equation*}
\rho(a, b, c ; q)-\rho(b, a, c ; q)=\left(\frac{1}{b}-\frac{1}{a}\right) \frac{[c, a q / b, b q / a, q ; q]_{\infty}}{[-c / a,-c / b,-a q,-b q ; q]_{\infty}} \tag{6.1}
\end{equation*}
$$

Let us suppose

$$
F(a, b, c ; q)=\frac{\rho(a, b, c ; q)-\rho(b, a, c ; q)}{\rho(a, b ; q)-\rho(b, a ; q)}=\frac{[c ; q]_{\infty}}{[-c / a,-c / b ; q]_{\infty}},
$$

where

$$
\begin{equation*}
\rho(a, b ; q)=\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-)^{n} q^{n(n+1) / 2}\left(\frac{a}{b}\right)^{n}}{[-a q ; q]_{n}} \tag{6.2}
\end{equation*}
$$

(i) Replacing q by q^{2} and then taking $c=q^{2}$ and $a=b=+1$ in (6.2), we get

$$
\begin{gather*}
F\left(+1,+1, q^{2} ; q^{2}\right)=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[-q^{2} ; q^{2}\right]_{\infty}^{2}}=\frac{\left[q^{2} ; q^{2}\right]_{\infty}^{3}}{\left[q^{4} ; q^{4}\right]_{\infty}^{2}} \\
=\frac{q^{1 / 12} \eta^{3}(2 \tau)}{\eta^{2}(4 \tau)} \tag{6.3}
\end{gather*}
$$

(ii) Replacing q by q^{2} and then taking $c=q^{2}$ and $a=1, b=-1$ in (6.2), we get

$$
\begin{align*}
F\left(1,-1, q^{2} ; q^{2}\right)= & \frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[-q^{2} ; q^{2}\right]_{\infty}\left[q^{2} ; q^{2}\right]_{\infty}}=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[q^{4} ; q^{4}\right]_{\infty}} \\
& =\frac{q^{1 / 12} \eta(2 \tau)}{\eta(4 \tau)} . \tag{6.4}
\end{align*}
$$

(iii) Replacing q by q^{2}, then taking $c=q^{2}, a=b=-1$ in (6.2), we get

$$
\begin{equation*}
F\left(-1,-1, q^{2} ; q^{2}\right)=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[q ; q^{2}\right]_{\infty}^{2}}=\frac{1}{\left[q^{2} ; q^{2}\right]_{\infty}}=\frac{q^{1 / 12}}{\eta(2 \tau)} . \tag{6.5}
\end{equation*}
$$

(iv) Replacing q by q^{2}, then taking $c=q^{2}, a=b=-q$ in (6.2), we get

$$
\begin{equation*}
F\left(-q,-q, q^{2} ; q^{2}\right)=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[q ; q^{2}\right]_{\infty}^{2}}=\frac{\left[q^{2} ; q^{2}\right]_{\infty}^{3}}{[q ; q]_{\infty}^{2}}=\frac{\eta^{3}(2 \tau)}{q^{1 / 6} \eta^{2}(\tau)} \tag{6.6}
\end{equation*}
$$

(v) Replacing q by q^{2}, then taking $c=q^{2}, a=q$ and $b=-q$ in (6.2), we get

$$
\begin{equation*}
F\left(q,-q, q^{2} ; q^{2}\right)=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[-q ; q^{2}\right]_{\infty}\left[q ; q^{2}\right]_{\infty}}=q^{-1 / 6} \eta(4 \tau) . \tag{6.7}
\end{equation*}
$$

(vi) Replacing q by q^{2}, then taking $c=q^{2}, a=b=q$ in (6.2), we get

$$
\begin{equation*}
F\left(q, q, q^{2} ; q^{2}\right)=\frac{\left[q^{2} ; q^{2}\right]_{\infty}\left[-q^{2} ; q^{2}\right]_{\infty}^{2}}{\left[-q ; q^{2}\right]_{\infty}^{2}\left[-q^{2} ; q^{2}\right]_{\infty}^{2}}=\frac{\eta^{2}(4 \tau) \eta^{2}(\tau)}{q^{1 / 6} \eta^{3}(2 \tau)} . \tag{6.8}
\end{equation*}
$$

(vii) From (6.3) and (6.8), we get

$$
\begin{equation*}
F\left(1,1, q^{2} ; q^{2}\right) F\left(q, q, q^{2} ; q^{2}\right)=\frac{\eta^{2}(\tau)}{q^{1 / 12}} \tag{6.9}
\end{equation*}
$$

(viii) Taking $c=q, a=b=1$ in (6.2), we get

$$
\begin{equation*}
F(1,1, q ; q)=\frac{[q ; q]_{\infty}}{[-q ; q]_{\infty}^{2}}=q^{1 / 24} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)} \tag{6.10}
\end{equation*}
$$

(ix) Taking $c=q, a=1 \& b=-1$ in (6.2), we get

$$
\begin{equation*}
F(1,-1 ; q ; q)=\frac{[q ; q]_{\infty}}{[q ; q]_{\infty}[-q ; q]_{\infty}}=q^{1 / 24} \frac{\eta(\tau)}{\eta(2 \tau)} \tag{6.11}
\end{equation*}
$$

(x) Taking $c=q, a=b=-1$ in (6.2), we get

$$
\begin{equation*}
F(-1,-1, q ; q)=\frac{1}{[q ; q]_{\infty}}=\frac{q^{1 / 24}}{\eta(\tau)}=\sum_{n=0}^{\infty} p(n) q^{n} \tag{6.12}
\end{equation*}
$$

(xi) Taking $c=q, a=b=q$ in (6.2), we get

$$
\begin{equation*}
F(q, q, q ; q)=\frac{[q ; q]_{\infty}^{3}}{4\left[q^{2} ; q^{2}\right]_{\infty}^{2}}=\frac{q^{1 / 24} \eta^{3}(\tau)}{4 \eta^{2}(2 \tau)} \tag{6.13}
\end{equation*}
$$

(xii) Taking $c=q, a=b$ and $b=1$ in (6.2), we get

$$
\begin{equation*}
F(q, 1, q ; q)=\frac{[q ; q]_{\infty}^{3}}{2\left[q^{2} ; q^{2}\right]_{\infty}^{2}}=\frac{q^{1 / 24} \eta^{3}(\tau)}{2 \eta^{2}(2 \tau)} \tag{6.14}
\end{equation*}
$$

(xiii) Taking $c=q, a=q$ and $b=-1$ in (6.2), we get

$$
\begin{equation*}
F(q,-1, q ; q)=\frac{[q ; q]_{\infty}}{2\left[q^{2} ; q^{2}\right]_{\infty}}=\frac{q^{1 / 24} \eta(\tau)}{2 \eta(2 \tau)} \tag{6.15}
\end{equation*}
$$

(xiv) Replacing q by q^{3} and then taking $c=q^{3}, a=b=1$ in (6.2), we get

$$
\begin{equation*}
F\left(1,1, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}^{3}}{\left[q^{6} ; q^{6}\right]_{\infty}^{2}}=q^{1 / 8} \frac{\eta^{3}(3 \tau)}{\eta^{2}(6 \tau)} \tag{6.16}
\end{equation*}
$$

(xv) Replacing q by q^{3} and then taking $c=q^{3}, a=1, b=-1$ in (6.2), we get

$$
\begin{equation*}
F\left(1,-1, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}}{\left[q^{6} ; q^{6}\right]_{\infty}}=q^{1 / 8} \frac{\eta(3 \tau)}{\eta(6 \tau)} \tag{6.17}
\end{equation*}
$$

(xvi) Replacing q by q^{3}, then taking $c=q^{3}, a=b=-1$ in (6.2), we get

$$
\begin{equation*}
F\left(-1,-1, q^{3} ; q^{3}\right)=\frac{1}{\left[q^{3} ; q^{3}\right]_{\infty}}=q^{1 / 8} \frac{1}{\eta(3 \tau)} \tag{6.18}
\end{equation*}
$$

(xvii) Replacing q by q^{3}, then taking $c=q^{3}, a=q$ and $b=q^{2}$ in (6.2), we get

$$
\begin{equation*}
F\left(q, q^{2}, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}}{\left[-q,-q^{2} ; q^{3}\right]_{\infty}}=\frac{\eta(\tau) \eta(6 \tau)}{q^{5 / 24} \eta(6 \tau)} . \tag{6.19}
\end{equation*}
$$

(xviii) Replacing q by q^{3}, then taking $c=q^{3}, a=-q$ and $b=-q^{2}$ in (6.2), we get

$$
\begin{equation*}
F\left(-q,-q^{2}, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}}{\left[q, q^{2} ; q^{3}\right]_{\infty}}=\frac{\eta^{2}(3 \tau)}{q^{5 / 24} \eta(\tau)} . \tag{6.20}
\end{equation*}
$$

(xix) Replacing q by q^{3}, then taking $c=q^{3}, a=q^{3}$ and $b=q^{3}$ in (6.2), we get

$$
\begin{equation*}
F\left(q^{3}, q^{3}, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}^{3}}{4\left[q^{6} ; q^{6}\right]_{\infty}^{2}}=q^{1 / 8} \frac{\eta^{3}(3 \tau)}{4 \eta^{2}(6 \tau)} . \tag{6.21}
\end{equation*}
$$

(xx) Replacing q by q^{3}, then taking $c=q^{3}, a=q^{3}$ and $b=1$ in (6.2), we get

$$
\begin{equation*}
F\left(q^{3}, 1, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}^{3}}{2\left[q^{6} ; q^{6}\right]_{\infty}^{2}}=q^{1 / 8} \frac{\eta^{3}(3 \tau)}{2 \eta^{2}(6 \tau)} \tag{6.22}
\end{equation*}
$$

(xxi) Replacing q by q^{3}, then taking $c=q^{3}, a=q^{3}$ and $b=-1$ in (6.2), we get

$$
\begin{equation*}
F\left(q^{3},-1, q^{3} ; q^{3}\right)=\frac{\left[q^{3} ; q^{3}\right]_{\infty}}{2\left[q^{6} ; q^{6}\right]_{\infty}}=q^{1 / 8} \frac{\eta(3 \tau)}{2 \eta(6 \tau)} . \tag{6.23}
\end{equation*}
$$

References

[1] Andrews, G. E. and Berndt, B. C. (2005): Ramanujan Lost Note book Part I, Springer-Verlag, New York.
[2] Denis, R.Y., Singh, S.N. and Singh, S.P., On certain transformations of polybasic bilateral hypergeometric series, South East Asian J. Math \& Math. Sc., vol. 1, No. 2 (2003), 41-66.
[3] Gasper, G. and Rahman, M., Basic Hypergeometric Seires, second edition, Cambridge University Press (2004).
[4] Ramanujan, S., The 'Lost' notebook and other unpublished papers, Narosa publishing house, New Delhi (1988)

