GENERAL CLASS OF GENERATING FUNCTIONS AND ITS APPLICATIONS-I

Kamlesh Bhandari

Department of Mathematics, JIET Group of Institutions, Mogra-Village, NH-65, Pali Road, Jodhpur- Rajasthan, INDIA E-mail:bhandarikamlesh604@gmail.com
(Received: August 16, 2017)

Abstract

In this paper, we introduce a general class of generating functions involving the product of modified Jacobi polynomials $P_{n}^{(\alpha, \beta-n)}(x)$ and the confluent hypergeometric functions ${ }_{1} F_{1}[$.$] and then obtain its some more general class$ of generating functions by group-theoretic approach and discuss their applications. Earlier Chandel, Kumar and Senger [1] introduce a general class of generating functions involving the product of modified Bessel polynomials $Y_{n}^{(\alpha+n)}$ and the confluent hypergeometric functions ${ }_{1} F_{1}[$.$] .$

Keywords and Phrases: Generating functions, Modified Jacobi polynomials, Confluent hypergeometric functions.

2010 Mathematics Subject Classification: 33C45, 33C99, 22E30.

1. Introduction

The modified Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$ is introduced by Srivastava and Manocha [6] is defined as:

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\frac{(1+\alpha)_{n}}{n!}{ }_{2} F_{1}\left[-n, 1+\alpha+\beta+n ; 1+\alpha ; \frac{1-x}{2}\right] \tag{1.1}
\end{equation*}
$$

The confluent hypergeometric functions ${ }_{1} F_{1}$ can be replaced by many special functions such as the Bessel polynomials. Srivastava and Manocha [6] defined and studied various bilinear, bilateral and multilinear generating functions.
In the present paper, we introduce the following new general class of generating functions:

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta-n)}(x){ }_{1} F_{1}[-n ; m+1 ; u] w^{n} \tag{1.2}
\end{equation*}
$$

where a_{n} is any arbitrary sequence independent of x, u and w.
Again in (1.2) setting various values of a_{n}, we may find several results on generating functions involving different special functions, hence (1.2) is a general class of generating functions.
In the present paper, we evaluate some more general class of generating functions and finally discuss their applications.

2. Group-Theoretic Operators

In our investigations, we use the following group-theoretic operators:
The operators R_{1} due to Chongdar [2] is given by

$$
\begin{equation*}
R_{1}=\left(1-x^{2}\right) y \frac{\partial}{\partial x}-2 y^{2} \frac{\partial}{\partial y}-[(1+\alpha+\beta+p)(1+x)-2 \beta] y \tag{2.1}
\end{equation*}
$$

Such that

$$
\begin{equation*}
R_{1}\left[P_{n}^{(\alpha, \beta-n)}(x) y^{n}\right]=-2(n+1) P_{n+1}^{(\alpha, \beta-n-1)}(x) y^{n+1} \tag{2.2}
\end{equation*}
$$

The operator R_{2} due to Miller Jr. [5] is given by

$$
\begin{equation*}
R_{2}=v \frac{\partial}{\partial t}+v u t^{-1} \frac{\partial}{\partial u}-v u t^{-1} \tag{2.3}
\end{equation*}
$$

Such that

$$
\begin{equation*}
R_{2}\left[{ }_{1} F_{1}[-n ; m+1 ; v] v^{n} t^{m}\right]=m_{1} F_{1}[-n-1 ; m ; u] v^{n+1} t^{m-1} \tag{2.4}
\end{equation*}
$$

The actions of R_{1} and R_{2} on function f are obtained as follows,

$$
\begin{equation*}
e^{w R_{1}} F(x, y)=\{1+w y(1+x)\}^{-1-\alpha-\beta-p}(1+2 w y)^{\beta} F\left[\frac{x+w y(1+x)}{1+w y(1+x)}, \frac{y}{1+2 w y}\right] \tag{2.5}
\end{equation*}
$$

[Chongdar; 2]
and

$$
\begin{equation*}
e^{w R_{2}} f(v, t, u)=\exp \left(\frac{-u v w}{t}\right) f\left[v, t+w v, u\left(1+\frac{w v}{t}\right)\right] \tag{2.6}
\end{equation*}
$$

[Miller Jr.; 5]

3. Some more general class of generating functions

In this sections, making an use of the general class of generating function (1.2) and group-theoretic operators R_{1} and R_{2} with their actions given in the section

2, we obtain some more general class of generating functions through following theorem:

Theorem 3.1. If there exists a general class of generating functions involving the product of modified Jacobi polynomials $P_{n}^{(\alpha, \beta-n)}(x)$ and the confluent hypergeometric functions ${ }_{1} F_{1}[-n ; m+1 ; u]$ given by

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta-n)}(x){ }_{1} F_{1}[-n ; m+1 ; u] w^{n} \tag{3.1}
\end{equation*}
$$

Then the following more general class of generating functions holds:

$$
\begin{gather*}
\{1+w y(1+x)\}^{-1-\alpha-\beta-p}(1+2 w y)^{\beta}(1+w)^{m} \\
\times \exp (-u w) G\left[\frac{x+w y(1+x)}{1+w y(1+x)}, u(1+w), w y t\right] \\
=\sum_{n, p, q=0}^{\infty} \frac{a_{n}(-2)^{p}(n+1)_{p}}{p!q!} P_{n+p}^{(\alpha, \beta-n-p)}(x)_{1} F_{1}[-n-q ; m-q+1 ; u](m w)^{q}(w y)^{n+p} t^{n} \tag{3.2}
\end{gather*}
$$

Proof. In the general class of generating functions (3.1), replacing w by wyv and then multiplying by t^{m} on both sides, we get

$$
\begin{equation*}
G(x, u, w y v) t^{m}=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta-n)}(x) y^{n}{ }_{1} F_{1}[-n ; m+1 ; u] v^{n} t^{m} w^{n} \tag{3.3}
\end{equation*}
$$

Now, operating both the sides of (3.3) with $e^{w R_{1}} e^{w R_{2}}$, we obtain

$$
\begin{equation*}
e^{w R_{1}} e^{w R_{2}}\left[G(x, u, w y v) t^{m}\right]=e^{w R_{1}} e^{w R_{2}} \sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha-n)}(x) y^{n}{ }_{1} F_{1}[-n ; m+1 ; u] v^{n} t^{m} w^{n} \tag{3.4}
\end{equation*}
$$

The left hand side of (3.4) becomes

$$
\begin{align*}
&\{1+w y(1+x)\}^{-1-\alpha-\beta-p}(1+2 w y)^{\beta}(t+w v)^{m} \exp \left(\frac{-u v w}{t}\right) \\
& \times G\left[\frac{x+w y(1+x)}{1+w y(1+x)}, u\left(1+\frac{w v}{t}, w y v\right)\right] \tag{3.5}
\end{align*}
$$

and the right hand side of (3.4) becomes

$$
\begin{equation*}
\sum_{n, p, q=0}^{\infty} \frac{a_{n}(-2)^{p}(n+1)_{p} m^{q} w^{n+p+q}}{y} t^{m+p} v^{n+q} P_{n+p}^{(\alpha, \beta-n-p)}(x){ }_{1} F_{1}[-n-q ; m-q+1 ; u] \tag{3.6}
\end{equation*}
$$

Now equating (3.5) and (3.6), and setting $v=t$, we prove the result (3.2).
4. Special Case: Taking $u=0$ in given theorem and proceeding as the proof of the main theorem, we get

$$
\begin{array}{r}
\{1+w y(1+x)\}^{-1-\alpha-\beta-p}(1+2 w y)^{\beta} G\left[\frac{x+w y(1+x)}{1+w y(1+x)}, w y\right] \\
=\sum_{n, p=0}^{\infty} \frac{a_{n}(-2)^{p}(n+1)_{p} w^{n+p}}{p!} y^{n+p} P_{n+p}^{(\alpha, \beta-n-p)}(x) \\
=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{a_{n-p}(-2)^{p}(n-p+1)_{p} w^{n}}{p!} y^{n} P_{n}^{(\alpha, \beta-n)}(x)=\sum_{n=0}^{\infty} g_{n}(y) P_{n}^{(\alpha, \beta-n)}(x) \tag{4.1}
\end{array}
$$

where $g_{n}(y)=\sum_{p=0}^{n} \frac{a_{n-p}(-2)^{p}(n-p+1)_{p}}{p!} y^{n}$ which is known result and as parallel to Chongdar [3].

References

[1] Chandel, R. C. S., Kumar, H. and Sengar, S., On a general class of generating functions and its applications, Jnanabha, Vol. 35 (2005), 67-72.
[2] Chongdar, A.K., On Jacobi polynomials, Bull. Cal. Math. Soc., 78, 195-199 (1986).
[3] Chongdar, A.K., Some generating functions of modified Jacobi polynomials, Commun. Fac. Sci. Univ. Ank. Series A_{1}, 41, 169-178(1992).
[4] Majumdar, A.B., On bilateral generating functions-III, J. Indian Acad. Math., 20(2) (1998), 101-104.
[5] Miller, Jr. W., Encyclopedia of Mathematics and its Applications (Symmetry and separation of variables), Addision-Wesley Publishing Co. London, Tokyo, 1977.
[6] Srivastava, H.M. and Manocha, H.L., A treatise of generating functions, Halsted Press (Ellis Horwood), John Willey and Sons, New York, Chichester, Brisbane and Toronto, 1984.

