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ABSTRACT : The aim of this paper is to study the unsteady MHD flow of generalised 

visco-elastic fluids through a porous rectangular duct. From this generalised 

investigation we have deduced the different problems of flow in cases of oldroyd first 

order, second order, n-th order fluids ; Maxwell first order, second order, n-th order 

fluids ; Rivlin-Ericksen first order, second order, n-th order fluids and ordinary viscous 

fluid. 

 The numerical calculation of the velocity profile for oldroyd fluid has been 

made in the forms of tables and graphs. 

INTRODUCTION 

 The development of hydrodynamic motion of inviscid and viscous liquids has 

been presented in the informative works of Lamb (1), Milne-Thomson (2), Batchelor 

(3), Landau and Lifshitz (4) and others (5,6,7). Various hydromagnetic problems and 

the corresponding development of the theories will be found in the monographs of 

Cowling (8), Ferraro and Plumpton (9); Cabannes (10), Jeffrey (11) and others 

(12,13,14). The hydrodynamic and hydromagnetic stability problems were considered 

by Chandrasekhar (15) and Lin (16). 

 There are circumstances to consider a large variety of continua in which 

considerable impetus is given to the development of rheology as a science covering 

a wide range of study of material properties exhibiting both the properties of ideal 
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elastic bodies and those of viscous liquids. It constitute the subjects of the theory of 

elasticity and hydromechanics of viscous liquids. In fact, there are materials, solid or 

liquid, which exhibit the properties of elasticity of solids and viscosity of liquids. It 

gives rise to the discipline of Rheology of continua, the continua may be solid, liquid 

or gases. These liquids are sometimes called as non-Newtonian liquids or non-

Newtonian fluids or viscoelastic fluids. In this area we can cite good number of 

references (17-28) and some papers of Sengupta and his research Collaborators 

(29-31). Moreover, a survey monograph of non-Newtonian fluid flows of Kapur, Bhatt, 

Sacheti (32) may be referred. It contains a large number of research articles of 

various scientists. Applied Mathematicians and research workers who are working in 

different relevant fields. The works of Bhatnagar (33) are also very worthy to mention. 

Fluid dynamics of visco-elastic liquids are amply presented in the work of Joseph 

(34). In this paper the authors have considered unsteady MHD flow of a generalised 

visco-elastic oldroydian fluid in a porous rectangular duct. 

GENERAL MODEL OF VISCO-ELASTIC LIQUIDS 

 A new general model of visco-elastic fluid has been suggested by Professor 

P. R. Sengupta in the following form 
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where τij is the stress tensor, τ’ij is the deviatoric stress tensor, eij the rate of strain 

tensor, p the fluid pressure, λj are new material constants of which the greatest value 

λ1, represents the relaxation time parameter and λ2,λ3,...,λn, are additional material 

constants ; µj are also new material constants of which the greatest value µ1 

represents the strain rate retardation time parameter and µ2,µ3,...,µn, are additional 
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material constants representing the behaviour of a very wide class of visco-elastic 

liquids, δij the metric tensor in cartesian co-ordinates and µ, the co-efficient of 

viscosity and vi the velocity components. The material constants λj and µj designating 

visco-elasticity satisfy the following conditions n321 ... λ>>λ>λ>λ  and 

n321 ... µ>>µ>µ>µ  i.e. they are arranged in descending order of magnitudes. 

EQUATION OF MOTION 

 We consider the boundary of the rectangular duct is x = ± a, y = ± b; 0, 0, 

w(x, y, t) are the velocity components in x, y, z directions, where w (x, y, t) is axial 

velocity of the fluid. Here z-axis is parallel to the length of the duct. 

 Here we consider an uniform transverse magnetic field of constant strength 

Bo which acts perpendicularly to the non-conducting duct. 

 Since the magnetic field is of moderate strength, the induced effects and Hall 

currents may be neglected. The equation of continuity div 
→
V  = 0 satisfied with this 

choice of the velocity. 

 The equation for unsteady motion following generalised Darcy's law is given 

by ; 
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where K is the permeability of the medium, σ is the electrical conductivity of the fluid 

and −
z

p

∂
∂

 is the axial pressure gradient. 

 

SOLUTION OF THE PROBLEM 
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 Here we have used the fact that the momentum flux, the pressure gradient, 

the local velocity and the volume flow rate are all periodic in time with frequency ω. 

We assume 
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Substituting for W from (2) in equation (1), we get, 
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  where 
µ
σ

= 0aBM  

For the symmetric condition, the flow in region x > 0, y > 0 is considered. Accordingly, 

the boundary conditions are 
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To solve the problem we choose the finite cosine transform defined by 
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Multiplying equation (3) by cosqmx, cosqny and then integrating twice with respect to 

x and y in the limits from x=0 to x=1 and y=0 to y=b/a and using the boundary 

conditions (4) and (5), we get, 
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Applying the inversion formula for the finite cosine transform defined by 
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Hence W(x,y,t)=ReW1(x,y)eiωt  
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Deduction for Various Visco-Elastic fluids of Different Orders 

 Let us now consider various visco-elastic conducting fluids in presence of 

transverse magnetic field of different orders for the solutions of the titled problem. In 

fact we can pass on from the general solution of the generalized model of fluid to the 

particular cases of visco-elastic conducting fluids by suitable changing visco-elastic 

parameters. In the following we are deriving ten cases of fluids. 

Case I. Oldroyd first order fluid 

 Here we put 0...,0 n321 =λ==λ=λ≠λ  and 0...,0 n321 =µ==µ=µ≠µ  in 

equation (1) and (9) and the velocity is obtained in the following form 
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Case II. Oldroyd second order fluid 

 Here we put 0...,0,0 n4321 =λ==λ=λ≠λ≠λ  and  

0...,0,0 n4321 =µ==µ=µ≠µ≠µ  in equation (1) and (9) the velocity is obtained in 

the following form 
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Case III. Oldroyd n-th order fluid 

 If all the parameters )n,...,2,1j(, ij =µλ  are non-zero, then the velocity is 

clear in equation (9). 

Case IV. Maxwell first order fluid 

 Here we put )n,...,3,2j(0,0 j1 ==λ≠λ  and )n,...,2,1j(,0j =≠µ  in equation (1) 

and (9) the velocity is obtained in the following form 
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Case V. Maxwell second order fluid 

 Here we put 0...,0,0 n4321 =λ==λ=λ≠λ≠λ  and  

)n,...,2,1j(,0j =≠µ  in equation (1) and (9). Thus finally we get the corresponding 

solution as 
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Case VI. Maxwell n-th order fluid 

 Now we put )n,...,3,2,1j(,01 =≠λ  and )n,...,2,1j(,0j ==µ  in equation (1) and 

(9). Thus finally we get the corresponding solution as follows 
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Case VII. Rivlin-Erocksen first order fluid 

 Here we put )n,...,3,2j(,0j =−λ  and 0...,0 n432j =µ==µ=µ=µ≠µ  in 

equation (1) and (9). As such the solution of the corresponding problem is derived in 

the following form  
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Case VIII. Rivlin-Ericksen second order fluid 

 Let us put )n,...,2,1j(,0j =−λ  and 0...,0,0 n432j =µ==µ=µ≠µ≠µ  in 

equation (1) and (9). So the solution is obtained as follows  
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where 
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Case IX. Rivlin-Ericksen n-th order fluid 

 Now we put )n,...,2,1j(,0j =−λ  and )n,...,2,1j(,0j =≠µ  in equation (1) and (9) 

and the velocity is obtained as follows 
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Case X. Ordinary viscous fluid 

 Here we put )n,...,2,1j(,0jj ==µ=λ  in the quation (1) and (9). Thus finally we 

get, 
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Basic Theory and Equation of Motion for oldroyd Fluid 

 For slow motion, the rheological equations for oldroyd visco-elastic fluid are 
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  ( )i,jj,iij vv
2

1
e += . 

We consider the flow in x’y’ plane. z’-axis is taken parallel to the length of the duct 

with impermeable boundary x’=±a, y’=±b; 0, 0, w’(x’,y’,t’) are respectively the velocity 

components along x’, y’, z’ direction, where w’(x’,y’t’) is asial velocity of the fluid. 

 The equation of continuity div 0V =
→

 is satisfied with the choice of the 

velocity. Following generalized Darcy’s law, the equation for unsteady motion is given 

by 
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We introduce the non-dimensional quantities in equation (10) 
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z
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 is the axial pressure gradient. 

 

Solution of the Problem 
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Case I. When the pressure gradient is periodic in nature. 

 In this case we assume )AeRe(
z

p tiω=
∂
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and                       ti
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using the same boundary conditions and the same procedure as in the previous 

generalized article, we get the solution of the equation (11) as follows 
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Case II. When the pressure gradient is transient in nature. 

 Here we assume tAe
z

p ω−=
∂
∂

−  

and               t
1 e)y,x(WW ω−=  

 In this case we have also used the same boundary conditions and we have 

proceeded in the similar fashion as before. Finally, we get the solution of the 

equation (11) as follows 
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Numerical Calculations 

 For numerical calculations of equation (12), we take λ1=0.0023, µ1=0.0005, 

M=10, ω=430, K=0.5, b=0.25, a=0.5, x=0.75, y=0.45 and for numerical computations 

of the velocity distribution in the equation (13), we take λ1=0.0023, µ1=0.0005, M=10, 

ω=10, K=0.5, b=0.25, a=0.5, x=0.75, y=0.45. The tables and graphs are given as 

follows : 
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