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Abstract: In this paper, we evaluate four integrals involving the product of ele-
mentary special functions and the multivariable Aleph-function. The integrals are
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1. Introduction and Preliminaries
The multivariable Aleph-function is an extension of the multivariable I-function

recently defined by C.K. Sharma and Ahmad [8], itself is a generalization of the
multivariable H-function defined by Srivastava et al [10,11]. The multivariable
Aleph-function is defined by means of the multiple contour integral :
We have,
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where j = 1 to r and k=1 to r.
For more details, see Ayant [1,2,3]. The condition for absolute convergence of mul-
tiple Mellin-Barnes type contour can be obtained by extension of the corresponding
conditions for multivariable H-function given by as
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with k = 1, ..., r, i = 1, ..., R and i(k) = 1, ..., R(k).
The complex numbers zi are not zero. Throughout this document, we assume the
existence and absolute convergence conditions of the multivariable Aleph-function.
We may establish the the asymptotic expansion in the following convenient form,
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For convenience, we will use the following notations in this paper.

V = m1, n1; ...;mr, nr (1.5)
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2. Main integrals
In this section, we have evaluated the four following integrals
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Proof of (2.1)
The integral (2.1) can be established if we express the multivariable Aleph-function
in the integrand on the left of (2.1) in terms of its Mellin-Barnes type contour
integral (1.1), interchange the order of integrations (which is justified due to the
absolute convergence of the integral involved in the process) and evaluate the inner
integral with the help of the following result [6, page 350,Eq (7)].∫ ∞

0

tρ−1Jc(at)Jd(at)Je(2bt)dt =
ac+db−c−d−ρΓ

(
c+d+e+ρ

2

)
2c+dΓ

(
1− 1

2
c− 1

2
d− 1

2
e− 1

2
ρ
)×

4F3

[
c+d+1

2
, c+d+1

2
, c+d+e+ρ

2
, c+d−e+ρ

2

c+ 1, d+ 1, c+ d+ 1

∣∣∣∣∣ a2b2
]

(2.5)

Now, writing series expansion for 4F3 changing the order of integration ans sum-
mation and interpreting the result thus obtained with the help of (1.1), we obtain
the right hand side of (2.1). The integrals (2.2) to (2.4) can be established in the
similar manner with the difference that we use the results [6, page 371, Eq (51)],
[5, page 93, (2.2.7)] and [5, page 90, (2.2.2)] respectively instead of (2.5).
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Remarks. We obtain the same relations with the multivariable H-function defined
by Srivastava and Panda [10,11], see Bohara and Jain [4] for more details.

If r = 2, the multivariable Aleph-function reduces to Aleph-function of two vari-
ables defined by Sharma [7], and we obtain the same relations.

If r = 2 and τi, τi′ , τi′′ → 1, the multivariable Aleph-function reduces to I-function
of two variables defined by Sharma and Mishra [9] and we have the similar formu-
lae.

4. Conclusion
Specializing the parameters of the multivariable Aleph-function, we can obtain

a large number of news and knowns integrals involving various special functions
of one and several variables useful in Mathematics analysis, Applied Mathematics,
Physics and Mechanics. The result derived in this paper is of general character and
may prove to be useful in several interesting situations appearing in the literature
of sciences.
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