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1. Introduction

Throughout w, xy and A denote the classes of all, gai and analytic scalar val-
ued single sequences, respectively. We write w? for the set of all complex double
sequences (T,.,), where m,n € N, the set of positive integers. Then, w? is a linear
space under the coordinate wise addition and scalar multiplication.
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Some initial works on double sequence spaces is found in Tripathy [1] and Mur-
saleen [2] and Mursaleen and Edely [3,4], Subramanian and Misra [5], Pringsheim
[6], Moricz and Rhoades [7], Robison [8], Savas et al. [9], Raj et al. [10], Francesco
Tulone [11] and many others.

Let (z,n) be a double sequence of real or complex numbers. Then the series
Zi,n:l Tmn 18 called a double series. The double series ano n1 Tmn glVe one space
is said to be convergent if and only if the double sequen’ce (Smn)is convergent,
where

m,n

Sonn = Z zij(m,n=1,2,3,..).

ij=1

A double sequence = = (x,,,)is said to be double analytic if
SUDm.n |xmnlﬁ < 00.

The vector space of all double analytic sequences are usually denoted by A% A
sequence T = (Z,,,) is called double entire sequence if

1
min — () as m,n — oo.

|xmn

The vector space of all double entire sequences are usually denoted by I'2. Let the
set of sequences with this property be denoted by A? and I'? is a metric space with
the metric

d(x,y) = Supmn {|xmn — ymn|#+n cm,n: 1,23, } , (1.1)

forallz = {Z,, } andy = {ymn } inT2. Let ¢ = { finite sequences} .
Consider a double sequence z = (2,,,). The (m,n)™ section 2™ of the se-

quence is defined by zi™" = itorijoi; for all m,n € N,

00 ..0 O
00 .0 O

00 .10
00 .00
with 1 in the (m,n)™ position and zero otherwise.

A double sequence x = (x,,,) is called double gai sequence if ((m + n)! |xmn|)#ﬂ —
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0 as m,n — oo. The double gai sequences will be denoted by x?.

2. Definitions and Preliminaries

A double sequence z = (Z,,,) has limit 0 (denoted by P — limz = 0)

(i.e) ((m+n)! |zme)™™ — 0 as m,n — co. We shall write more briefly as
P — convergent to 0.

An Orlicz function is a function M : [0, 00) — [0, 00) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (z) — oo as
x — oo. If convexity of Orlicz function M is replaced by M (z+y) < M (x) +
M (y), then this function is called modulus function. An Orlicz function M is
said to satisfy A,— condition for all values wu, if there exists K > 0 such that
M (2u) < KM (u) ,u > 0.

2.1. Lemma. Let M be an Orlicz function which satisfies Ay,— condition and let
0 < 6 < 1. Then for each t > §, we have M (t) < K6 'M (2) for some constant
K >0.

A double sequence M = (M,,,) of Orlicz function is called a Musielak-Orlicz
function [see [12]]. A double sequence g = (gmy) defined by

Gmn (V) = sup {|v|u — (M) (w) :u >0}, myn=1,2,---

is called the complementary function of a sequence of Musielak-Orlicz M. For a
given sequence of Musielak-Orlicz function M, the Musielak-Orlicz sequence space
tar is defined as follows

1/m-+n

tM:{x€w2:IM(\xmn|) —>Oasm,n,/<:—>oo},

where I, is a convex modular defined by

Iy () = Z Z My (’$mn|)1/m+n'

m=1n=1

2.2. Definition. A double sequence x = (x,,,) of real numbers is called almost
P— convergent to a limit 0 if

P — limy g0 SUPr,s205 SRS L () 2 ) T = 0.

m=r n=s

that is, the average value of (x,,,) taken over any rectangle
{(m,n):r<m<r+p—1,s<n<s+q—1} tends to 0 as both p and ¢ to oo,
and this P— convergence is uniform in r and s. Let denote the set of sequences

with this property as [;(3} .
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2.3. Definition. Let A = (\,,) and p = (u,) be two non-decreasing sequences of
positive real numbers such that each tending to oo and

A1 S A LA =1, pppr Spp+ 1, =1

Let I, = [m — Ay, +1,m] and I, = [n — pp, + 1,1].

For any set K C N x N, the number

I (K) = limm,n_mﬁ {(i,5) :i € I, j € I, (4,5) € K}|,is called the (A, ) —
density of the set K provided the limit exists. [See [31]].

2.4. Definition. A double sequence x = (x,,,) of numbers is said to be (A, u) —
statistical convergent to a number ¢ provided that for each € > 0,

lz‘mmm_mﬁ {(%,7) 14 € I, j € Ly, |Tmn — & > €} =0,

that is, the set K (¢) = /\mlﬂn H{(i,7) 14 € L, J € L, |Tymn — & > €}] has (A, pu) —
density zero. In this case the number ¢ is called the (A, ) — statistical limit of the

sequence T = (Ty,) and we write St(y ) limmnooe = &.

2.5. Definition. Let M be an Orlicz function and P = (p,,,) be any factorable
double sequence of strictly positive real numbers, we define the following sequence
space: x3; [AC\,. 1, P =

Pmn
{P - limmmﬁ Zmelr,s Znel,-,s [M ((m +n)! |$m+r,n+s|)1/m+n] =0, } )
uniformly in 7 and s.

We shall denote x3,; [AC\,. i, P] as x? [AC\,, .| respectively when pp,, = 1 for
all m and n. If x is in x*[AC),,,., P], we shall say that z is almost () in
x? strongly P—convergent with respect to the Orlicz function M. Also note if
M (z) = @, ppn = 1 for all m,n and k then x3, [AC),. ., P] = X*[AC\, s P,
which are defined as follows: x* [AC),. ..., P] =

{P - Mmm’nﬁ Emelr,s Znelr,s [M ((m + TL)' ’$m+r,n+s|>1/m+n] = 07 } ) uniformly

in r and s.
Again note if p,,, = 1 for all m and n then x3, [AC\,. .., P] = X3, [AC,, .. ] - We
define x3, [AC\,. .., P] =

. m-n | Pmn
{P R EL DI DI [M ((m + 1) [Zmsrmss] )™ ] ~0, } ,
uniformly in r and s.

2.6. Definition. Let M be an Orlicz function and P = (p,,,) be any factorable
double sequence of strictly positive real numbers, we define the following sequence
space: X3, [P] =
{P - limp’q_mopiq LR [M ((m+n)! |xm+ﬂn+s|)1/m+n] pmn 0} , uniformly
in 7 and s.

If we take M (x) = @, ppmn = 1 for all m and n then x3, [P] = x°.
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—

2.7. Definition. The double number sequence x is S
then
P — lzmmn)\ ~MATy,s

— P— convergent to 0

mMn

{(m, ) € Ly o M ((m+n0)! [Zosrnrs — O|>1/m+n}’ o
In this case we write S/,\mu\n — lim (M (m + n)! |Zpmgrnts — o[)/™ " = 0.

3. The Backward operator of convergence of double almost (\,,/,) in x?
Riesz space

Let n € N and X be a real vector space of dimension m, where n < m
(m beinfinite), T a triangle, and F : (X x X) x (X x X) — D*. Then F is
called a probabilistic Riesz space. A real valued function F(d,(xy,...,x,),t) =
F(||(di(z1,0), ... ,dn(xn,0))]p,t) on X satistying the following four conditions:
(i) F (|[(di(x1,0),...,dn(xn,0))|p,t) = 0 if and and only if F(d;(z1,0), ..., dn(zy,
0),t) are linearly dependent,
(i) F (H(d1 (21,0),...,dn(xn,0))]p, t) is invariant under permutation,
(ii' (H(adl(xl’ 0)7 s ,Oédn(l‘n, 0))“1’? t) = F <|O“ ||(d1(x17 0>7 ce ,dn(In, 0))”177 t) )
a
(

i)
eR
v) F(dp((z1,91), (22, 92) -+ (¥n, Yn), 1) = Fldx (@1, 32, 2)", ) +F(dy (y1, 92,
)p)/p t) for 1 < p < oo; (or)
( ) F(d((z1,11), (x2,92), - (s Yn)), ) 1= sup F({dx (v1, @2, - @), dy (y1, Y2, -+
Yn) 1, 1), for (x1, 29, -2 € X, y1,y2, - yn € Y, F, %) is called the p product metric
of the Cartesian product of n metric spaces is the p norm of the n-vector of the
norms of the n subspaces.
A trivial example of p product metric of n metric space is the p norm space is
X = R equipped with the following Euclidean metric in the product space is the p
norm:

s dn (0, 0))[| ;1) = sup F (|det(dmn (Tmn, 0))],t) =
d11 ($11, ) dy (9512, O) e iy (ﬂflm O)
da; (513'21, ) das ($22, 0) Y (l’lm 0)

F([[(dy(21,0), ..

sup

dnl (xnb 0) dn2 (xn27 O) dnn (ajnna O)

where x; = (x;1, - x;,) € R" for each i =1,2,--n

If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the p— metric. Any complete p— metric space is said to
be p— Banach metric space.

3.1. Definition. Let L be a real vector space and let < be a partial order on this
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space. L is said to be an ordered vector space if it satisfies the following properties

(i) If z,y € L and y < x, then y + 2z < x + z for each z € L.

(i) If z,y € L and y < x, then Ay < Az for each A > 0.

If in addition L is a lattice with respect to the partial ordering, then L is said to
be Riesz space.

A subset S of a Riesz space X is said to be solid if y € S and |z| < |y| implies
x € S.

A linear topology 7 on a Riesz space X is said to be locally solid if 7 has a base at
zero consisting of solid sets.

3.2. Definition. Let 37 |ACh,,, P.1|(d (21,0),d (22,0), - ,d (21,0, | be

a Riesz space of Musielak-Orlicz function. A double sequence (x,,,) of points in
x? is said to be S (1) — convergent in (X, F, ) if for each t > 0, 6 € (0,1) and for
non zero z € X such that

5 ({mn EN:F (an (((m ) )Y 2 ,t) <1- 9})) ~0

that s , (P = limn st { Ser,, Socr,, F
([M (n+ )l =)™ i) <1-0}) =0,

In this case we write

$(7) = (P = limmnste {Comer,. S,
F([M (1)l =04 250) 1) = 1.

3.3. Definition. Let 37 [ACh,p., P [|(d (21,0),d (22,0) -+ ,d (2,1,0)]],

a Riesz space of Musielak-Orlicz function. A double sequence (x,,,) of points in
x? is said to be V— convergent in (X, F, %) if for each ¢ > 0, 8 € (0, 1) there exists
an positive integer ny such that

F (an (((m + )l |xmn\)1/m+n,z;t)} >1- 8.

whenever m,n > ng and for non zero z € X.

3.4. Definition. Let 27 [Acwn,P 1(d (21,0) ,d (22,0) -+, d (201, 0))]

a Riesz space of Musielak-Orlicz function. A double sequence (x,,,) of points in
x? is said to be V— Cauchy in (X, F, *) if for each ¢t > 0, 8 € (0,1) there exists an
positive integer ng = ng (€) such that
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F (M ((m 4 )! i = s ) ™ 2:8) < 1= 0.
whenever m,n,r, s > ngy and for non zero z € X.

3.5. Definition. Let x37 [AC’,\mun,P |(d (x1,0),d(x2,0), - ,d(zy_1, ))H]

a Riesz space of Musielak-Orlicz function. A double sequence (x,,,) of points in
x? is said to be S (1) — convergent in (X, F, *) if for each ¢t > 0, 8 € (0,1) and for
non zero z € X such that

oy ({m,n EN:F (an (((m+n)! \xmnl)l/m%,z;t) <1- ﬁ})) =0

Pmn

<P lzmmn/\mun

In this case we write

S(7)y— <P iy {Zmeh,s 2oner, F <[M (m+n)! | Tmnl — 0)1/m+"}pm"
czt) b)) =1.

3.6. Definition. Let x3j |ACh, . P [[(d(21,0),d (25,0), -+ ,d (2,1,0)]],| be

a Riesz space of Musielak-Orlicz function. A double sequence (x,,,) of points in
x? is said to be V— Cauchy in (X, F, *) if for each ¢t > 0, 3 € (0,1) there exists an
positive integer ng = ng (€) such that

ov <{m,n eN: F <an (((m—l—n)! | T mn — J;Ts])l/m+n,z;t> <1-— B})) =0

or equivalently,

oy ({m,n eN: F (an (((m + 1)l |Zmn — xr5|)l/m+n’2;t> > 1= 6}» =1
4. Main Results
4.1. Proposition. Let x37 [AO/\munaP I(d (x1,0), d (22,0) -+, d (21, 0)) }

be a Riesz space of Musielak-Orlicz function. A double sequence (z,,,) of x* in
(X, F,x) if for each t > 0, 5 € (0,1) and for non zero z € X, then the following
statements are equivalent

(i)ov ({mn EN:F (an <((m ) T — xrs\)l/m%,z;t) <1- 5})) ~0
(ii)dy ({mn eN:F (an ((<m ) [T — ) z;t) >1- 5})) ~1
()8 (7)o (P = st { Soner,, Suer,, F ([M (00 -+ 2)H ol =0

{Zmﬂw et ([ M (04 0! g = 07"

Pmn
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4.2. Theorem. Let x3; [AC), .. PoII(d(21,0),d(22,0),++ ,d (201,0))],| €

S (7)y and ¢ € R be a almost (A, u,) Riesz space of Musielak-Orlicz function. A
double sequence (z,,,) in (X, F, *) then

. . m-n Pmn
D) (7)o = (P = climmnst { Zmer. Ler, F ([M (0 + 1)l 2ma] = 0)'/™]
D)) =Sy = (P = limmast { Cner,, Loer,, F (M (m+0)! @l

] )

S (r)y = (P = limmost { Cner,. er,, F (M (m+1)! 20+ Yo
)1/m+n] pon t) }) =S (T)g — (P — LM 5 {ngﬂs Der,.
[M ((m + n)! | zn| — 0)1/’“*"} o t> }) +
o = (P = timms i {0 er,, Suer, F (M ((m+0)! [yl
o))
Proof: The proof of this theorem is straightforward, and thus will be omitted.
4.3. Theorem. Let x37 [AC’AM,W P, |[(d(x1,0),d(x2,0),--- ,d(2n-1,0))]| ] be a

almost (\,t,) Riesz space of Musielak-Orlicz function. A double sequence ()
analytic in (X, F, *) then

<a> 2 [AcAm,WPH( (21,0),d (22,0) -+ ,d (w1, >>M < 7)y implies
X7 [ACk i P (21,0) d (22,0) -+ d (2,0, O), | =
<b>A2f [ACs s PN (A (21,0) d (22,0) -+, (s, >>||} <>v imply
A% [ACh s P1I(@ (21,0)d (22,0 .-+, d (201, 0))]], | =
(©)8 ()¢ M3 [ACh, s P (A (21,0)d (22,0) -+, (w1, >>M
W (1)g A3} [ACs, 0, P I(d (1,0),d (w3,0) -+ d (wa-1,0))],].
Proof: Let ¢ > 0 and x37 [AChu,. P,II(d (21,0),d (22,0) -+ ,d (w0 1,0))],| =

W (1)g for all 7, s € N, we have
(it {Sen, S, F ([M (4 )l = 0)77]" 0 )) =



The Backward Operator of Double Almost (A ) convergence... 39

{Zmehs Znelrs F ([M ((m + n)' ’xm,n| _ 0)1/m+n]pmn ’Z,t)} >
‘ (limm’n—)\mlun {Emeh,s Zneh,s F <|:M ((m + n)' ‘xm,n‘ _ 0)1/m+n:|

min (eh, eH)

prnn

=02 9)

Hence \37 [ACh,u,, P, I(d (21,0), (22, 0) -+ ,d (501, 0))],] = S (7)g
Proof(b): Suppose that x3} [AC’AM#MP |(d (x1,0),d (x2,0), -+ ,d(zy_1, ))||]
S ()¢ NAZ7 [ACh,p0s P11 (21,0),d (22,0 .-+ ,d (21,0))]], | - Sinee

X7 [AC s P (d (21,0)  d (22,0) -+ d (201,01, | €

A3 [ACh .. Pl (21,0) 1 d (22,0) -+ . (e, >>||] we write

{Soetn, Ser, F([M G+ )zl = 0) 7 28) ) < 7, for all 1,5 €
N, let

‘ <>\mlun {Zmeh,s Znelr,s F ([M ((m + n)! ‘xm,n‘ - O)l/mﬁq " X2 t) > 6}) )
= | (52 { Sen, Socr, £ ([ m )t = 0)7757)™ zit) < )]

T W

(5 {Zmer Ser, £ ([M (On )t = 0™ 251)

(5.2 { Zmecn, Lca. F (M (( 0) |

<ﬁ{zmemé neH, ([ ((m +n)! zm,| — )1/m+n]pmnaz§
).

m—+n)! @, .| —

t
max (Th,TH) Grs + mam( h €M) . Taking the limit as ¢ — 0 and r,s — o0, it
follows that x27 [Acwn,p 1(d (21,0 ,d (22,0, -+ ,d (2n_1,0))] } eW ().
(c) Follows from (a) and (b).
4.4. Theorem. If liminf, (’\Tf;) > 0, then S (1) C S(7)g
Proof: Let x3; [ACh,u,. PoII(d(21,0),d(25,0)++ ,d (2, 1,0))],] € S(r). For

given € > (0, we get

(2 {men, S, ([M (0 )l = 0) 7)) = €} | 5 G where
G5 is in the theorem of 4.3.(b). Thus,

1/m-+n Pmn
‘(Aml,un {Zmefr,s Zneh,s F ([M ((m + n)' |.Tm’n| - 0) fmt ] ,Z,t) Z E})‘ Z Grs -
%. Taking limit as r, s — oo and using limin f, (%) > 0, we get

X7 [ACh s PN (20,0) 1 (22,0) - d (20, 0)], | € S (g
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Let 0 < Upmp < Uy and (Umnv,,l) be double analytic. Then

W (r,v)g Cw(T,u)g

Proof: Let \%7 [AC,\mun,P |(d(21,0),d(x2,0),- - ,d(zp1, ))H] e W(rv)g.

Let W (7)o = (

o {Zmeb,s Yner F ([M ((m+n)! T n| — O)l/m+nrm 2 t) })

for all r,s € N and A\, u, = umnv;i for all m,n € N. Then 0 < A\, u, < 1 for all

m,n € N. Let b be a constant such that 0 < b < A\, u, < 1 for all m,n € N.
Define the double sequences (k) and (¢,,,) as follows:

For W ()¢ > 1, let (knn) = (W(7)g) and lp, = 0 and for W (1) < 1,

let kppn = 0 and 4, = W (7)g. Then it is clear that for all m,n € N, we

have W (T)g = kpn + lnn and W (1)am#n = kdmin 4 gAmin . Now it follows that

kpmin < ke, < W (7)o and omim < M Therefore

(Amlun {Emebs > oner, F ( M ((m ) W ()

({5,
(2 {Sere
{

1

Now for each r, s,

1

(Amﬂn {ZmEIrs
1

()‘m,ufn {Zmelrs

;25 t)

——
~—

1
)\mﬂn ZmGL« s

Lzt M

-0 s)}) -

1/m+n Pmn

-0 s)}) -
1/m+n Pmn

—O) ] ,z;t)} +

)
)

o))
1/m-+nT Pmn
) ]

’nEIrS F ( MA{(m+ n (kmn + gmn)AmMn

(&
(&
(|

"ij

W ()

nEL s

’11

m + n
neh . (m+n) (Emn>z\mun
m + n

LB M

(«
(
(
(

n€ly s F

(i (22) ™)

ne]rs ( M m_'_n

4.6. Theorem.

A?\} |:Acz\munap H( (xla ),d(ﬂfg,O) ) T (.an 1, ))H :| (7_7 AQ)V7WhereW(Ta A2)V =
mn]Pmn

sup (st { Soner, Ten, F ([M (]~ 07 ]

,2;t) < o0})

Proof: Let x = (z,,,) € W (7,A%)g . Then there exists a constant 77 > 0 such
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that -
<>\m1un {Zmelr,s Znelr,s F ([M ((m + n)! |mm,n| - 0)1/m+n} )y <5 t> }) <

Pmn
sup <)\ml#n {ZmEL.yS Zneb-,s F ([M ((m + n)' |xm,n| - 0)1/m+n] 2 t) }) S Tl for
all r, s € N. Therefore we have

& = (2pn) € A3} [ACh, 0, Pl (21,0),d (23,0) -+, d (201,0))]],| . Conversely,

let & = () € A3 [ACh 0, P I(d (21,0),d (22,0) -+ ,d (20 -1,0))],| . Then
there exists a constant 75 > 0 such that

Pmn
<ﬁ {Zmelm Znelr,s F ([M ((m+n)zpmn| — 0)1/m+n} , 25 t> }) < T for all

m,n and r,s. So,

m n anTl
(52 { e, Tcr, F([M (m 4 m)t ol = 00077 20) }) <
T, ﬁ > ometns dmer,, 1 < T, for all m,n and r,s. Thus @ = (2,,) € W (7, A?)o

4.7. Theorem. X3} [ACA,RM,P |(d(21,0),d(x2,0),-- ,d(zn-1,0))] ] be a al-
most (A pn) Riesz space of Musielak-Orlicz function. A double sequence (z,,,) in
(X, F, %) is V— statistically convergent if and only if it is V—statistically Cauchy
Proof' Let © = (z,,) be a V—statistically convergent sequence in
[Acwn, P,||(d (21,0 ,d (2,0, ,d (xn_1,0))] ] Let € > 0 be given. Choose

5 > 0 such that

(1—s)x(1—s)>1—c¢ (4.1)
is satisfied.
For ¢ > 0 and non-zero z € y2; [Acwn, P,||(d (x1,0) ,d (22,0), -+ ,d (zn_1, 0))||p}
define o
A(s,0) = (52 { Zomenns Sonern F([M ((m 4+ 0)! ] = 0)7]
, 2] %) <1 —s}) and
4 (5,) = (525 { Zmen, Ser, F ([M (G ) ] = 070
,z;%) > 1—8}).

It follows that v (A(s,t)) = 0 and consequently dy (A°(s,t)) = 1. Let n €
A (s,t). Then

F ([M ((m + n)! | Ty — o)l/m+n]pm" 2 g) <1-s (4.2)

m-n Pmn
B (e,t) = </\mlun {Zmelm Znelm F ([M ((m+n)! | zpn| — 0)1/ + ] 7z;t)
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<1l-—¢€}).
It is enough to prove that B (e,t) C A(s,t). Let a,b € B (e,t), then for non-zero
2 e [Acxm,wp I(d(1,0),d (22,0), -+ d (@a-1, 0], ]
Z Z ([ (Tap — a:cyd)l/er"]pmn ,z;t) <1-—e (4.3)
m,un aEIrs be[rs
If

L F([m Ymn ] t) <1
Am“n Zaelr,s Zbe[’r,s ('Ta,b - xc’d) 7Z7t - - ¢

then we have

Pmn

ﬁ Zael,.ys Zbelns F ([M (xa,b - 0)1/m+n] y 25 %) <1l-s

and therefore a,b € A (s,t). As otherwise that is if

<Am1,m {Zaeu,s 2ver,, ([M ((a+b)!zap| — O)I/Mb]pab ) 25 %) >1-— s})
then by (4.1), (4 2) and (4.3) we get -

l—e= )\mun Zaehs Zbelrs ([M (Tap — $c,d)1/m+n] ) 25 t)

Pab
> (s { et Soen, F ([M (a4 0t sl = 0™ 2it) > 1= s} ) o
(Amlpn {Zcelrs Zcens F ([M ((c+d)!zeal — O)l/Cerer y 25 5) >1- S})

>(1—s)x(l—s)>1—c¢
which is not possible. Thus B (¢,t) C A(s,t). Since oy (A (s,t)) = 0, it follows
that oy (B (€,t)) = 0. This shows that (x,,,) is V—statistically Cauchy.
Conversely, suppose (Z,,,) is V—statistically Cauchy not in V—statistically
convergent. Then there exists positive integer n and for non-zero

z € X3 [AC’,\mM, P, ||(d(x1,0),d (22,0),-- ,d(z,_1,0))] ] such that if we take

Alet) = <ﬁ {Zaeb.ys der, F <[M (Tap — I'cd)l/aer} " ) 2; t) <1- e})

and
m-n Pmn
B(et) = (52 {Zuer, Suen, £ ([M (m+1)! el = 0) ] 21 4)

>1—¢€}).

then

N+

v (A (e 1)) =0 =dv (B(e1))
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consequently
5o (A% (6,1)) = 1 = by (B (e,1)) (1.4)
Since s
1/a+b |7
(5 { et Toner, F ([ M (@ — o)™ 25 }) =
m4n | P
2 (ﬁ {Zmelm Znejm F ([M ((m + n)! |:L‘m7n| _ 0)1/ + ] , 25 %) }) >1—c¢€,
if
m-n | P —e
</\m1un {Zmeh,s Znelr,s F ([M ((m + n)! ‘xm,n‘ - 0)1/ " } <5 %) }) > 17

then we have

Pab
(SV <ﬁ {Zaeh,s zbe[r,s F (|:M (xa,b — xcd)l/a+bi| , 25 t) >1— 6}) =0

that is oy (A° (¢,t)) = 0, which contradicts (4.4) as oy (A°(e,t)) = 1. Hence = =
(Tmn) is V—statistically convergent.
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