THE BACKWARD OPERATOR OF DOUBLE ALMOST $(\lambda_m \mu_n)$ CONVERGENCE IN χ^2 -RIESZ SPACE DEFINED BY A MUSIELAK-ORLICZ FUNCTION

ISSN: 2319-1023

Vandana¹, Deepmala², N. Subramanian³ & Lakshmi Narayan Mishra^{4*}

¹Department of Management Studies, Indian Institute of Technology, Madras, Tamil Nadu-600 036, INDIA E-mail: vdrai1988@gmail.com

> ²Mathematics Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur-482 005, INDIA E-mail: dmrai23@gmail.com

³Department of Mathematics, SASTRA University, Thanjavur-613 401, INDIA E-mail: nsmaths@yahoo.com

4*Department of Mathematics, Lovely Professional University, Phagwara, Punjab-144 411, INDIA E-mail: lakshminarayanmishra04@gmail.com *Corresponding Author

Abstract: In this paper we introduce the backward operator is ∇ and study the notion of ∇ - statistical convergence and ∇ - statistical Cauchy sequence using by almost $(\lambda_m \mu_n)$ convergence in χ^2 -Riesz space and also some inclusion theorems are discussed.

Keywords: Analytic sequence, Museialk-Orlicz function, double sequences, chi sequence, Lambda, Riesz space, strongly, statistical convergent.

2010 Mathematics Subject Classification: 40A05, 40C05, 40D05.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^2 for the set of all complex double sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Tripathy [1] and Mursaleen [2] and Mursaleen and Edely [3,4], Subramanian and Misra [5], Pringsheim [6], Moricz and Rhoades [7], Robison [8], Savas et al. [9], Raj et al. [10], Francesco Tulone [11] and many others.

Let (x_{mn}) be a double sequence of real or complex numbers. Then the series $\sum_{m,n=1}^{\infty} x_{mn}$ is called a double series. The double series $\sum_{m,n=1}^{\infty} x_{mn}$ give one space is said to be convergent if and only if the double sequence (S_{mn}) is convergent, where

$$S_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, ...).$$

A double sequence $x = (x_{mn})$ is said to be double analytic if

$$\sup_{m,n} |x_{mn}|^{\frac{1}{m+n}} < \infty.$$

The vector space of all double analytic sequences are usually denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if

$$|x_{mn}|^{\frac{1}{m+n}} \to 0 \text{ as } m, n \to \infty.$$

The vector space of all double entire sequences are usually denoted by Γ^2 . Let the set of sequences with this property be denoted by Λ^2 and Γ^2 is a metric space with the metric

$$d(x,y) = \sup_{m,n} \left\{ |x_{mn} - y_{mn}|^{\frac{1}{m+n}} : m, n : 1, 2, 3, \dots \right\},$$
(1.1)

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 . Let $\phi = \{finite \ sequences\}$.

Consider a double sequence $x = (x_{mn})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \delta_{ij}$ for all $m, n \in \mathbb{N}$,

$$\delta_{mn} = \begin{pmatrix} 0 & 0 & \dots 0 & 0 & \dots \\ 0 & 0 & \dots 0 & 0 & \dots \\ \cdot & & & & & \\ \cdot & & & & & \\ 0 & 0 & \dots 1 & 0 & \dots \\ 0 & 0 & \dots 0 & 0 & \dots \end{pmatrix}$$

with 1 in the $(m,n)^{th}$ position and zero otherwise.

A double sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{\frac{1}{m+n}} \to$

0 as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 .

2. Definitions and Preliminaries

A double sequence $x = (x_{mn})$ has limit 0 (denoted by P - limx = 0) (i.e) $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. We shall write more briefly as P - convergent to 0.

An Orlicz function is a function $M:[0,\infty)\to[0,\infty)$ which is continuous, nondecreasing and convex with M(0)=0, M(x)>0, for x>0 and $M(x)\to\infty$ as $x\to\infty$. If convexity of Orlicz function M is replaced by $M(x+y)\leq M(x)+M(y)$, then this function is called modulus function. An Orlicz function M is said to satisfy Δ_2- condition for all values u, if there exists K>0 such that $M(2u)\leq KM(u), u\geq 0$.

2.1. Lemma. Let M be an Orlicz function which satisfies Δ_2 – condition and let $0 < \delta < 1$. Then for each $t \ge \delta$, we have $M(t) < K\delta^{-1}M(2)$ for some constant K > 0.

A double sequence $M = (M_{mn})$ of Orlicz function is called a Musielak-Orlicz function [see [12]]. A double sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v|u - (M_{mn})(u) : u \ge 0\}, m, n = 1, 2, \cdots$$

is called the complementary function of a sequence of Musielak-Orlicz M. For a given sequence of Musielak-Orlicz function M, the Musielak-Orlicz sequence space t_M is defined as follows

$$t_{M} = \left\{ x \in w^{2} : I_{M} \left(\left| x_{mn} \right| \right)^{1/m+n} \to 0 \, \text{as} \, m, n, k \to \infty \right\},$$

where I_M is a convex modular defined by

$$I_M(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} M_{mn} (|x_{mn}|)^{1/m+n}.$$

2.2. Definition. A double sequence $x = (x_{mn})$ of real numbers is called almost P- convergent to a limit 0 if

$$P - \lim_{p,q \to \infty} \sup_{r,s \ge 0} \frac{1}{pq} \sum_{m=r}^{r+p-1} \sum_{n=s}^{s+q-1} ((m+n)! |x_{mn}|)^{1/m+n} \to 0.$$

that is, the average value of (x_{mn}) taken over any rectangle $\{(m,n): r \leq m \leq r+p-1, s \leq n \leq s+q-1\}$ tends to 0 as both p and q to ∞ , and this P- convergence is uniform in r and s. Let denote the set of sequences with this property as $\left[\widehat{\chi^2}\right]$.

2.3. Definition. Let $\lambda = (\lambda_m)$ and $\mu = (\mu_n)$ be two non-decreasing sequences of positive real numbers such that each tending to ∞ and

$$\lambda_{m+1} \le \lambda_m + 1, \lambda_1 = 1, \ \mu_{n+1} \le \mu_n + 1, \mu_1 = 1.$$

Let
$$I_m = [m - \lambda_m + 1, m]$$
 and $I_n = [n - \mu_n + 1, n]$.

For any set $K \subseteq \mathbb{N} \times \mathbb{N}$, the number

 $\delta_{\lambda,\mu}(K) = \lim_{m,n\to\infty} \frac{1}{\lambda_m\mu_n} |\{(i,j): i\in I_m, j\in I_n, (i,j)\in K\}|, \text{ is called the } (\lambda,\mu) - \text{density of the set } K \text{ provided the limit exists. [See [31]].}$

2.4. Definition. A double sequence $x = (x_{mn})$ of numbers is said to be (λ, μ) – statistical convergent to a number ξ provided that for each $\epsilon > 0$,

 $\lim_{m,n\to\infty} \frac{1}{\lambda_m \mu_n} \left| \{ (i,j) : i \in I_m, j \in I_n, |x_{mn} - \xi| \ge \epsilon \} \right| = 0,$

that is, the set $K(\epsilon) = \frac{1}{\lambda_m \mu_n} |\{(i,j) : i \in I_m, j \in I_n, |x_{mn} - \xi| \ge \epsilon\}|$ has (λ, μ) – density zero. In this case the number ξ is called the (λ, μ) – statistical limit of the sequence $x = (x_{mn})$ and we write $St_{(\lambda,\mu)} lim_{m,n\to\infty} = \xi$.

2.5. Definition. Let M be an Orlicz function and $P = (p_{mn})$ be any factorable double sequence of strictly positive real numbers, we define the following sequence space: $\chi_M^2 [AC_{\lambda_m \mu_n}, P] =$

 $\left\{ P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m+n)! |x_{m+r,n+s}| \right)^{1/m+n} \right]^{p_{mn}} = 0, \right\},$ uniformly in r and s.

We shall denote $\chi_M^2 \left[A C_{\lambda_m \mu_n}, P \right]$ as $\chi^2 \left[A C_{\lambda_m \mu_n} \right]$ respectively when $p_{mn} = 1$ for all m and n. If x is in $\chi^2 \left[A C_{\lambda_m \mu_n}, P \right]$, we shall say that x is almost $(\lambda_m \mu_n)$ in χ^2 strongly P—convergent with respect to the Orlicz function M. Also note if $M(x) = x, p_{mn} = 1$ for all m, n and k then $\chi_M^2 \left[A C_{\lambda_m \mu_n}, P \right] = \chi^2 \left[A C_{\lambda_m \mu_n}, P \right]$, which are defined as follows: $\chi^2 \left[A C_{\lambda_m \mu_n}, P \right] = \chi^2 \left[A C_{\lambda_m \mu_n}, P \right]$

$$\left\{P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right] = 0, \right\}, \text{ uniformly in } r \text{ and } s.$$

Again note if $p_{mn} = 1$ for all m and n then $\chi_M^2 [AC_{\lambda_m \mu_n}, P] = \chi_M^2 [AC_{\lambda_m \mu_n}]$. We define $\chi_M^2 [AC_{\lambda_m \mu_n}, P] =$

$$\left\{ P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m+n)! |x_{m+r,n+s}| \right)^{1/m+n} \right]^{p_{mn}} = 0, \right\},$$
uniformly in r and s .

2.6. Definition. Let M be an Orlicz function and $P = (p_{mn})$ be any factorable double sequence of strictly positive real numbers, we define the following sequence space: $\chi_M^2[P] =$

$$\left\{ P - \lim_{p,q \to \infty} \frac{1}{pq} \sum_{m=1}^{p} \sum_{n=1}^{q} \left[M \left((m+n)! |x_{m+r,n+s}| \right)^{1/m+n} \right]^{p_{mn}} = 0 \right\}, \text{ uniformly in } r \text{ and } s.$$

If we take $M(x) = x, p_{mn} = 1$ for all m and n then $\chi_M^2[P] = \chi^2$.

2.7. Definition. The double number sequence x is $\widehat{S_{\lambda_m\mu_n}} - P -$ convergent to 0 then

then
$$P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \max_{r,s} \left| \left\{ (m,n) \in I_{r,s} : M \left((m+n)! | x_{m+r,n+s} - 0| \right)^{1/m+n} \right\} \right| = 0.$$
 In this case we write $\widehat{S_{\lambda_m \mu_n}} - \lim \left(M \left((m+n)! | x_{m+r,n+s} - 0| \right)^{1/m+n} = 0.$

3. The Backward operator of convergence of double almost $(\lambda_m \mu_n)$ in χ^2 Riesz space

Let $n \in \mathbb{N}$ and X be a real vector space of dimension m, where $n \leq m$ $(m \ be \ infinite)$, τ a triangle, and $F: (X \times X) \times (X \times X) \to D^+$. Then F is called a probabilistic Riesz space. A real valued function $F(d_p(x_1, \ldots, x_n), t) = F(\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p, t)$ on X satisfying the following four conditions:

- (i) $F(\|(d_1(x_1,0),\ldots,d_n(x_n,0))\|_p,t)=0$ if and and only if $F(d_1(x_1,0),\ldots,d_n(x_n,0),t)$ are linearly dependent,
- (ii) $F(\|(d_1(x_1,0),\ldots,d_n(x_n,0))\|_p,t)$ is invariant under permutation,
- (iii) $F(\|(\alpha d_1(x_1,0),\ldots,\alpha d_n(x_n,0))\|_p,t) = F(\|\alpha\|\|(d_1(x_1,0),\ldots,d_n(x_n,0))\|_p,t),$ $\alpha \in \mathbb{R}$
- (iv) $F(d_p((x_1, y_1), (x_2, y_2) \cdots (x_n, y_n), t) = F(d_X(x_1, x_2, \cdots x_n)^p, t) + F(d_Y(y_1, y_2, \cdots y_n)^p)^{1/p}, t)$ for $1 \le p < \infty$; (or)
- (v) $F(d((x_1, y_1), (x_2, y_2), \dots (x_n, y_n)), t) := \sup F(\{d_X(x_1, x_2, \dots x_n), d_Y(y_1, y_2, \dots y_n)\}, t)$, for $(x_1, x_2, \dots x_n \in X, y_1, y_2, \dots y_n \in Y, F, *)$ is called the p product metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the p norm:

$$F\left(\left\|\left(d_{1}(x_{1},0),\ldots,d_{n}(x_{n},0)\right)\right\|_{E},t\right) = \sup F\left(\left|\det\left(d_{mn}\left(x_{mn},0\right)\right)\right|,t\right) = \left|\begin{pmatrix}d_{11}\left(x_{11},0\right) & d_{12}\left(x_{12},0\right) & \ldots & d_{1n}\left(x_{1n},0\right)\\d_{21}\left(x_{21},0\right) & d_{22}\left(x_{22},0\right) & \ldots & d_{2n}\left(x_{1n},0\right)\\\vdots\\\vdots\\d_{n1}\left(x_{n1},0\right) & d_{n2}\left(x_{n2},0\right) & \ldots & d_{nn}\left(x_{nn},0\right)\end{pmatrix}\right|\right)$$

where $x_i = (x_{i1}, \dots x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots n$.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p- metric. Any complete p- metric space is said to be p- Banach metric space.

3.1. Definition. Let L be a real vector space and let \leq be a partial order on this

space. L is said to be an ordered vector space if it satisfies the following properties :

- (i) If $x, y \in L$ and $y \le x$, then $y + z \le x + z$ for each $z \in L$.
- (ii) If $x, y \in L$ and $y \le x$, then $\lambda y \le \lambda x$ for each $\lambda \ge 0$.

If in addition L is a lattice with respect to the partial ordering, then L is said to be Riesz space.

A subset S of a Riesz space X is said to be solid if $y \in S$ and $|x| \leq |y|$ implies $x \in S$.

A linear topology τ on a Riesz space X is said to be locally solid if τ has a base at zero consisting of solid sets.

3.2. Definition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of points in χ^2 is said to be $S(\tau)$ – convergent in (X, F, *) if for each t > 0, $\theta \in (0, 1)$ and for non zero $z \in X$ such that

$$\delta\left(\left\{m, n \in \mathbb{N} : F\left(M_{mn}\left(((m+n)! |x_{mn}|)^{1/m+n}, z; t\right) \le 1 - \theta\right\}\right)\right) = 0$$

that is ,
$$\left(P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F \left(\left[M \left((m+n)! \, |x_{m+r,n+s}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \le 1 - \theta \right\} \right) = 0.$$
 In this case we write
$$S\left(\tau\right) - \left(P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F \left(\left[M \left((m+n)! \, |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) = 1.$$

3.3. Definition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of points in χ^2 is said to be ∇ - convergent in (X, F, *) if for each t > 0, $\beta \in (0, 1)$ there exists an positive integer n_0 such that

$$F\left(M_{mn}\left(((m+n)!\,|x_{mn}|)^{1/m+n},z;t\right)\right) > 1-\beta.$$

whenever $m, n \ge n_0$ and for non zero $z \in X$.

3.4. Definition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of points in χ^2 is said to be ∇ - Cauchy in (X, F, *) if for each t > 0, $\beta \in (0, 1)$ there exists an positive integer $n_0 = n_0(\epsilon)$ such that

$$F\left(M_{mn}\left(((m+n)!|x_{mn}-x_{rs}|)^{1/m+n},z;t\right)\right)<1-\theta.$$

whenever $m, n, r, s \ge n_0$ and for non zero $z \in X$.

3.5. Definition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of points in χ^2 is said to be $S(\tau)$ – convergent in (X, F, *) if for each t > 0, $\beta \in (0, 1)$ and for non zero $z \in X$ such that

$$\delta_{\nabla}\left(\left\{m, n \in \mathbb{N} : F\left(M_{mn}\left(\left((m+n)! |x_{mn}|\right)^{1/m+n}, z; t\right) \leq 1 - \beta\right\}\right)\right) = 0$$

that is,

$$\left(P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m+r,n+s}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \le 1 - \beta \right\} \right) = 0.$$

In this case we write

In this case we write
$$S(\tau)_{\nabla} - \left(P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0\right)^{1/m+n}\right]^{p_{mn}}, z; t\right) \right\} \right) = 1.$$

3.6. Definition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m\mu_n}, P, \| (d(x_1,0), d(x_2,0), \cdots, d(x_{n-1},0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of points in χ^2 is said to be ∇ - Cauchy in (X, F, *) if for each t > 0, $\beta \in (0, 1)$ there exists an positive integer $n_0 = n_0(\epsilon)$ such that

$$\delta_{\nabla}\left(\left\{m,n\in\mathbb{N}:F\left(M_{mn}\left(\left((m+n)!\left|x_{mn}-x_{rs}\right|\right)^{1/m+n},z;t\right)\leq1-\beta\right\}\right)\right)=0$$

or equivalently,

$$\delta_{\nabla} \left(\left\{ m, n \in \mathbb{N} : F\left(M_{mn} \left(((m+n)! |x_{mn} - x_{rs}|)^{1/m+n}, z; t \right) > 1 - \beta \right\} \right) \right) = 1$$

4. Main Results

4.1. Proposition. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) of χ^2 in (X, F, *) if for each t > 0, $\beta \in (0, 1)$ and for non zero $z \in X$, then the following statements are equivalent

(i)
$$\delta_{\nabla} \left(\left\{ m, n \in \mathbb{N} : F\left(M_{mn} \left(((m+n)! | x_{mn} - x_{rs}|)^{1/m+n}, z; t \right) \le 1 - \beta \right\} \right) \right) = 0$$

(ii) $\delta_{\nabla} \left(\left\{ m, n \in \mathbb{N} : F\left(M_{mn} \left(((m+n)! | x_{mn} - x_{rs}|)^{1/m+n}, z; t \right) > 1 - \beta \right\} \right) \right) = 1$
(iii) $S\left(\tau\right)_{\nabla} - \left(P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! | x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}} \right] \right\} \right)$

$$,z;t) \}) = 1.$$

 $(-0)^{1/m+n}$ (z;t)

4.2. Theorem. Let $\chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \in S(\tau)_{\nabla}$ and $c \in \mathbb{R}$ be a almost $(\lambda_{m}\mu_{n})$ Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) in (X, F, *) then

(i) $S(\tau)_{\nabla} - \left(P - clim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right)$ (ii) $S(\tau)_{\nabla} - \left(P - lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right)$ (ii) $S(\tau)_{\nabla} - \left(P - lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid +y_{mn} \mid -0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) = S(\tau)_{\nabla} - \left(P - lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) + S(\tau)_{\nabla} - \left(P - lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right)$

Proof: The proof of this theorem is straightforward, and thus will be omitted.

4.3. Theorem. Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a almost $(\lambda_m \mu_n)$ Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) analytic in (X, F, *) then

$$(a)\chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \to W(\tau)_{\nabla} \text{ implies}$$

$$\chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \to S(\tau)_{\nabla}.$$

$$(b)\Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \to S(\tau)_{\nabla} \text{ imply}$$

$$\Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \to W(\tau)_{\nabla}.$$

$$(c)S(\tau)_{\nabla} \bigcap \Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] = W(\tau)_{\nabla} \bigcap \Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right].$$

Proof: Let $\epsilon > 0$ and $\chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] \rightarrow W(\tau)_{\nabla}$ for all $r, s \in \mathbb{N}$, we have $\left(\lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) \geq \epsilon$

$$\left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \ge \left| \left(\lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \ge \epsilon \right\} \right) \right| \cdot \min\left(\epsilon^h, \epsilon^H \right).$$

Hence $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right] \to S(\tau)_{\nabla}.$

 $\begin{aligned} & \mathbf{Proof}(\mathbf{b}) \colon \text{Suppose that } \chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)) \|_{p} \right] \in \\ & S\left(\tau\right)_{\nabla} \bigcap \Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)) \|_{p} \right] \cdot \text{Since} \\ & \chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)) \|_{p} \right] \in \\ & \Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)) \|_{p} \right] , \text{ we write} \\ & \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \leq T, \text{ for all } r, s \in \\ & \mathbb{N}, \text{ let} \\ & G_{rs} = \left| \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right\} \right| \\ & \text{and} \\ & H_{rs} = \left| \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) \right| \\ & \text{Then we have} \\ & \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) = \\ & \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in H_{r,s}} \sum_{n \in H_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) + \\ & \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in H_{r,s}} \sum_{n \in H_{r,s}} F\left(\left[M\left((m+n)! \mid x_{m,n} \mid -0\right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right) \leq \\ & max\left(T^{h}, T^{H} \right) G_{rs} + max\left(\epsilon^{h}, \epsilon^{H} \right). \text{ Taking the limit as } \epsilon \to 0 \text{ and } r, s \to \infty, \text{ it follows that } \chi_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)) \right) \right\|_{p} \right] \in W\left(\tau\right)_{\nabla}. \end{aligned}$

4.4. Theorem. If $liminf_{rs}\left(\frac{\lambda_r\mu_s}{rs}\right) > 0$, then $S\left(\tau\right) \subset S\left(\tau\right)_{\nabla}$

Proof: Let $\chi_M^{2\tau}\left[AC_{\lambda_m\mu_n},P,\|(d\left(x_1,0\right),d\left(x_2,0\right),\cdots,d\left(x_{n-1},0\right))\|_p\right]\in S\left(\tau\right)$. For given $\epsilon>0$, we get $\left|\left(\frac{1}{\lambda_m\mu_n}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}\left(\left[M\left((m+n)!\left|x_{m,n}\right|-0\right)^{1/m+n}\right]^{p_{mn}}\right)\geq\epsilon\right\}\right)\right|\supset G_{rs}$ where G_{rs} is in the theorem of 4.3.(b). Thus, $\left|\left(\frac{1}{\lambda_m\mu_n}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|x_{m,n}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\geq\epsilon\right\}\right)\right|\geq G_{rs}=\frac{\lambda_r\mu_s}{rs}$. Taking limit as $r,s\to\infty$ and using $\liminf_{rs}\left(\frac{\lambda_r\mu_s}{rs}\right)>0$, we get $\chi_M^{2\tau}\left[AC_{\lambda_m\mu_n},P,\|(d\left(x_1,0\right),d\left(x_2,0\right),\cdots,d\left(x_{n-1},0\right))\|_p\right]\in S\left(\tau\right)_\nabla$.

4.5. Theorem. Let $0 < u_{mn} \le v_{mn}$ and $(u_{mn}v_{mn}^{-1})$ be double analytic. Then $W(\tau, v)_{\nabla} \subset w(\tau, u)_{\nabla}$

Proof: Let $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right] \in W(\tau, v)_{\nabla}$. Let $W(\tau)_{\nabla} = \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\} \right)$ for all $r, s \in \mathbb{N}$ and $\lambda_m \mu_n = u_{mn} v_{mn}^{-1}$ for all $m, n \in \mathbb{N}$. Then $0 < \lambda_m \mu_n \le 1$ for all $m, n \in \mathbb{N}$. Let b be a constant such that $0 < b \le \lambda_m \mu_n \le 1$ for all $m, n \in \mathbb{N}$.

Define the double sequences (k_{mn}) and (ℓ_{mn}) as follows:

For $W(\tau)_{\nabla} \geq 1$, let $(k_{mn}) = (W(\tau)_{\nabla})$ and $\ell_{mn} = 0$ and for $W(\tau)_{\nabla} < 1$, let $k_{mn} = 0$ and $\ell_{mn} = W(\tau)_{\nabla}$. Then it is clear that for all $m, n \in \mathbb{N}$, we have $W(\tau)_{\nabla} = k_{mn} + \ell_{mn}$ and $W(\tau)_{\nabla}^{\lambda_m \mu_n} = k_{mn}^{\lambda_m \mu_n} + \ell_{mn}^{\lambda_m \mu_n}$. Now it follows that $k_{mn}^{\lambda_m \mu_n} \leq k_{mn} \leq W(\tau)_{\nabla}$ and $\ell_{mn}^{\lambda_m \mu_n} \leq \ell_{mn}^{\lambda_m}$. Therefore

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|W\left(\tau\right)^{\lambda_{m}\mu_{n}}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) = \\
\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|(k_{mn}+\ell_{mn})^{\lambda_{m}\mu_{n}}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) = \\
\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|W\left(\tau\right)^{\lambda_{m}\mu_{n}}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) + \\
\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|(\ell_{mn})^{\lambda_{m}\mu_{n}}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right).$$
Now for each r s

How for each
$$I, s,$$

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|(\ell_{mn})^{\lambda\mu}\right|-0\right)^{1/m+n}\right]^{p_{mn}}, z; t\right)\right\}\right) = \left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|\left((\ell_{mn})^{\lambda\mu}\left(\frac{1}{\lambda_{m}\mu_{n}}\right)^{1-\lambda\mu}\right)\right|-0\right)^{1/m+n}\right]^{p_{mn}}, z; t\right)\right\}\right)$$

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|\left((\ell_{mn})^{\lambda\mu}\right)^{\lambda\mu}\right)^{1/\lambda\mu}\right|-0\right)^{1/m+n}\right]^{p_{mn}}\right\}\right)$$

4.6. Theorem.

 $,z;t)\})^{\lambda\mu}$

$$\Lambda_{M}^{2\tau} \left[AC_{\lambda_{m}\mu_{n}}, P, \| (d(x_{1}, 0), d(x_{2}, 0), \cdots, d(x_{n-1}, 0)) \|_{p} \right] = W(\tau, \Lambda^{2})_{\nabla}, \text{ where } W(\tau, \Lambda^{2})_{\nabla} = \sup \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}} \right. \right. \\ \left. (z, t) < \infty \right\} \right)$$

Proof: Let $x = (x_{mn}) \in W(\tau, \Lambda^2)_{\nabla}$. Then there exists a constant $T_1 > 0$ such

that
$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!|x_{m,n}|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) \leq \sup\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!|x_{m,n}|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) \leq T_{1} \text{ for all } r,s\in\mathbb{N}. \text{ Therefore we have}$$

$$x = (x_{mn}) \in \Lambda_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$$
. Conversely, let $x = (x_{mn}) \in \Lambda_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$. Then

there exists a constant $T_2 > 0$ such that

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|x_{m,n}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right)\leq T_{2} \text{ for all } m,n \text{ and } r,s. \text{ So,}$$

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!|x_{m,n}|-0\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\right\}\right) \leq T_{2}\frac{1}{\lambda_{m}\mu_{n}}\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}1\leq T_{2}, \text{ for all } m,n \text{ and } r,s. \text{ Thus } x=(x_{mn})\in W\left(\tau,\Lambda^{2}\right)_{\nabla}$$

4.7. Theorem. $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$ be a almost $(\lambda_m \mu_n)$ Riesz space of Musielak-Orlicz function. A double sequence (x_{mn}) in (X, F, *) is ∇ - statistically convergent if and only if it is ∇ -statistically Cauchy

Proof: Let $x = (x_{mn})$ be a ∇ -statistically convergent sequence in $\chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$. Let $\epsilon > 0$ be given. Choose s > 0 such that

$$(1-s)*(1-s) > 1-\epsilon \tag{4.1}$$

is satisfied.

For t > 0 and non-zero $z \in \chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \dots, d(x_{n-1}, 0)) \|_p \right]$ define

define
$$A(s,t) = \left(\frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; \frac{t}{2} \right) \le 1 - s \right\} \right)$$
 and

$$A^{c}(s,t) = \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0\right)^{1/m+n} \right]^{p_{mn}}, z; \frac{t}{2} \right) > 1 - s \right\} \right).$$

It follows that $\delta_{\nabla}(A(s,t))=0$ and consequently $\delta_{\nabla}(A^{c}(s,t))=1$. Let $\eta\in A^{c}(s,t)$. Then

$$F\left(\left[M\left((m+n)!\,|x_{m,n}|-0\right)^{1/m+n}\right]^{p_{mn}},z;\frac{t}{2}\right) \le 1-s \tag{4.2}$$

$$B(\epsilon, t) = \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \right\}$$

$$\leq 1 - \epsilon$$
).

It is enough to prove that $B(\epsilon,t) \subseteq A(s,t)$. Let $a,b \in B(\epsilon,t)$, then for non-zero $z \in \chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1,0), d(x_2,0), \cdots, d(x_{n-1},0)) \|_p \right]$.

$$\frac{1}{\lambda_m \mu_n} \sum_{a \in I_{r,c}} \sum_{b \in I_{r,c}} F\left(\left[M \left(x_{a,b} - x_{c,d} \right)^{1/m+n} \right]^{p_{mn}}, z; t \right) \le 1 - \epsilon. \tag{4.3}$$

If

$$\frac{1}{\lambda_{m}\mu_{n}}\sum_{a\in I_{r,s}}\sum_{b\in I_{r,s}}F\left(\left[M\left(x_{a,b}-x_{c,d}\right)^{1/m+n}\right]^{p_{mn}},z;t\right)\leq 1-\epsilon.$$

then we have

$$\frac{1}{\lambda_{m}\mu_{n}} \sum_{a \in I_{r,s}} \sum_{b \in I_{r,s}} F\left(\left[M \left(x_{a,b} - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; \frac{t}{2} \right) \le 1 - s$$

and therefore $a, b \in A(s, t)$. As otherwise that is if

$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{a\in I_{r,s}}\sum_{b\in I_{r,s}}F\left(\left[M\left((a+b)!|x_{a,b}|-0\right)^{1/a+b}\right]^{p_{ab}},z;\frac{t}{2}\right)>1-s\right\}\right)$$
then by (4.1),(4.2) and (4.3) we get

$$1 - \epsilon \ge \frac{1}{\lambda_{m}\mu_{n}} \sum_{a \in I_{r,s}} \sum_{b \in I_{r,s}} F\left(\left[M\left(x_{a,b} - x_{c,d}\right)^{1/m+n}\right]^{p_{mn}}, z; t\right) \\ \ge \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{\sum_{a \in I_{r,s}} \sum_{b \in I_{r,s}} F\left(\left[M\left((a+b)! |x_{a,b}| - 0\right)^{1/a+b}\right]^{p_{ab}}, z; \frac{t}{2}\right) > 1 - s\right\}\right) * \\ \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{\sum_{c \in I_{r,s}} \sum_{c \in I_{r,s}} F\left(\left[M\left((c+d)! |x_{c,d}| - 0\right)^{1/c+d}\right]^{p_{cd}}, z; \frac{t}{2}\right) > 1 - s\right\}\right) \\ \ge (1 - s) * (1 - s) > 1 - \epsilon$$

which is not possible. Thus $B(\epsilon,t) \subset A(s,t)$. Since $\delta_{\nabla}(A(s,t)) = 0$, it follows that $\delta_{\nabla}(B(\epsilon,t)) = 0$. This shows that (x_{mn}) is ∇ -statistically Cauchy.

Conversely, suppose (x_{mn}) is ∇ -statistically Cauchy not in ∇ -statistically convergent. Then there exists positive integer η and for non-zero

$$z \in \chi_M^{2\tau} \left[AC_{\lambda_m \mu_n}, P, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]$$
 such that if we take

$$A\left(\epsilon,t\right) = \left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{a \in I_{r,s}}\sum_{b \in I_{r,s}}F\left(\left\lceil M\left(x_{a,b} - x_{cd}\right)^{1/a + b}\right\rceil^{p_{ab}}, z; t\right) \leq 1 - \epsilon\right\}\right)$$

and
$$B(\epsilon,t) = \left(\frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} F\left(\left[M\left((m+n)! |x_{m,n}| - 0 \right)^{1/m+n} \right]^{p_{mn}}, z; \frac{t}{2} \right) > 1 - \epsilon \right\} \right).$$
 then

$$\delta_{\nabla} (A(\epsilon, t)) = 0 = \delta_{\nabla} (B(\epsilon, t))$$

consequently

$$\delta_{\nabla} \left(A^{c} \left(\epsilon, t \right) \right) = 1 = \delta_{\nabla} \left(B^{c} \left(\epsilon, t \right) \right). \tag{4.4}$$

Since
$$\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{a\in I_{r,s}}\sum_{b\in I_{r,s}}F\left(\left[M\left(x_{a,b}-x_{cd}\right)^{1/a+b}\right]^{p_{ab}},z;t\right)\right\}\right) \geq 2\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|x_{m,n}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;\frac{t}{2}\right)\right\}\right) > 1-\epsilon,$$
 if $\left(\frac{1}{\lambda_{m}\mu_{n}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}F\left(\left[M\left((m+n)!\left|x_{m,n}\right|-0\right)^{1/m+n}\right]^{p_{mn}},z;\frac{t}{2}\right)\right\}\right) > \frac{1-\epsilon}{2}$ then we have

$$\delta_{\nabla} \left(\frac{1}{\lambda_{m}\mu_{n}} \left\{ \sum_{a \in I_{r,s}} \sum_{b \in I_{r,s}} F\left(\left[M \left(x_{a,b} - x_{cd} \right)^{1/a + b} \right]^{p_{ab}}, z; t \right) > 1 - \epsilon \right\} \right) = 0$$

that is $\delta_{\nabla}(A^{c}(\epsilon,t)) = 0$, which contradicts (4.4) as $\delta_{\nabla}(A^{c}(\epsilon,t)) = 1$. Hence $x = (x_{mn})$ is ∇ -statistically convergent.

Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

References

- [1] B. C. Tripathy, On statistically convergent double sequences, *Tamkang J. Math.*, **34(3)**, (2003), 231-237.
- [2] M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
- [3] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- [4] M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
- [5] N. Subramanian and U. K. Misra, The semi normed space defined by a double gai sequence of modulus function, *Fasciculi Math.*, **46**, (2010).
- [6] F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- [7] A. Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, *Math. Ann.*, **53**, (1900), 289-321.

- [8] G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50-73.
- [9] E. Savas and Richard F. Patterson, On some double almost lacunary sequence spaces defined by Orlicz functions, *Filomat (Niš)*, **19**, (2005), 35-44.
- [10] Kuldip Raj and Sunil K. Sharma, Lacunary sequence spaces defined by a Musielak Orlicz function, Le Matematiche, Vol. LXVIII-Fasc. I, (2013), 33-51.
- [11] Francesco Tulone, Regularity of some method of summation for double sequences, Le Matematiche, Vol. LXV-Fasc. II, (2010), 45-48.
- [12] J. Musielak, Orlicz Spaces, Lectures Notes in Math., 1034, Springer-Verlag, 1983.