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Abstract: In an attempt to unify various bilateral generating functions obtained
earlier by Srivastava and Panda [10], Raina [5], and Srivastava and Raina [12], we
study here a few new sets of polynomials associated with the multivariable Aleph-
function and give certain theorems concerning the generating functions of these
polynomials. In the sequel we also show that these theorems can be applied to
yield several bilateral generating function for some polynomial sets.
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1. Introduction and Preliminaries

The multivariable Aleph-function is an extension of the multivariable I-function
recently defined by C.K. Sharma and Ahmad [7], itself is a generalization of the mul-
tivariable H-function defined by Srivastava et al [9,10]. The multivariable Aleph-
function is defined by means of the multiple contour integral.

We have,
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where j =1 to r and k=1 to r.

For more details, see Ayant [1,2,3]. The condition for absolute convergence of mul-
tiple Mellin-Barnes type contour can be obtained by extension of the corresponding
conditions for multivariable H-function given by as
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with k=1,....ri=1,..,Rani® =1, R®.

The complex numbers z; are not zero. Throughout this document, we assume the
existence and absolute convergence conditions of the multivariable Aleph-function.
We may establish the the asymptotic expansion in the following convenient form,

N(21, .oy 20) = 0(|21] ", ooy |20 |%7), maz(|24], ..oy |20]) = O

N(z1, ..., 2) = 0(|20|?, ..y |20 ), min(| 2], .. |20 ]) — 00
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where k = 1,....,r;ap = mln[Re(d( /5( ))] j=1,...,my and By = maX[Re((cg-k) -
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For convenience, we will use the following notations in this paper.
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2. Generating functions for a general class of polynomials
Let f[(zs)] be a function of several complex variables z1, ..., zs defined formally
by the power series

fledl = Y w3 (21)

where the coefficients C[(k;)],k; > 0,7 = 1,...,s are arbitrary constants real or

complex.

Also let a class of polynomials Q (Sf j)] [(As); (z5); (yr)] be defined by
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Then our first multidimensional generating function is given by

Theorem 1. With the function [f[(z;)]] defined by (2.1), let
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Proof. On replacing QE(:“))(EIB 3)][()\5); (xs); (yr)] by its equivalent series from the

definition (2.2) with the multivariable Aleph-function expressed in terms of its
Mellin-Barnes contour integral representation (1.1) in the left member of (2.5),
changing the order of summation and integration which is assumed to be permis-
sible and then applying a result due to Srivastava and Panda [11, theorem 3, page
34], and finally interpreting the resulting expression by means of (1.1), we arrive
at the desired result of (2.5).

3. Two more classes of general polynomials

The polynomials T ([7(1?)53(155 )S)] [(As); (zs); (yr)] : Associated with the power series (2.1),
we may define a new set of general polynomials in the form
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the following theorem gives a generating function of type (2.5) v = a;,i = 1,..., s
with for this set of polynomials.

Theorem 2. If we let

Cllza), )] = > Clk]] ="

?Jl (1—o; — (Bi + 1)giki — Nik; = o, ..., o-i(r))l,S’ A
NO,nJrs:V . (32)

pit+8,qi+s,7iR:W

Yr

then
as);(Bs tzm - oy
S TSN s e T 2 = T+ )
ni,...,ns=0 i=1 v i=1

i : > )
Clay(—o) (14 o)™, o ze(—v6) % (1 + v, H(l + ;)75 ey Y H(l + ;)7 ]

i=1 i=1
(3.3)

The proof of theorem 2 use the similar method that theorem 1.
The polynomials AE(:S);(BS)] [(As); (zs); (yr)]: Associated with the power series (2.1),
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we may define a new set of general polynomials in the form
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By using the known result [11, theorem, page 38|, we can establish the following
theorem giving a Laurent series expansion involving these polynomials.

Theorem 3. In terms of the coefficients C[(ks)], k; > 0,7 =1, ..., s, given by (2.1),
let 8 and ¢ be defined by equations (2.3) and (2.4), respectively, with ¢; = —p;, 1 =
1,...,;s. Then the polynomials defined by (3.4) and (3.5) are generated by
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Remarks. We obtain the same relations with the multivariable H-function defined
by Srivastava and Panda [9,10], see Munot and Mathur [4] for more details.

If r = 2, the multivariable Aleph-function reduces to Aleph-function of two vari-
ables defined by Sharma [6], and we obtain the same relations.

If r =2 and 7, 7y, ;v — 1, the multivariable Aleph-function reduces to I-function
of two variables defined by Sharma and Mishra [8] and we have the similar formu-
lae.

4. Conclusion

Specializing the parameters of the multivariable Aleph-function, we can obtain
a large number of generating functions for a general class of polynomials involving
various special functions of one and several variables useful in Mathematics analysis,
Applied Mathematics, Physics and Mechanics. The result derived in this paper is
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of general character and may prove to be useful in several interesting situations
appearing in the literature of sciences.
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