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Abstract: The new tilted generalized logistic distribution, also called Marshall-
Olkin-Rathie-Swamee (MORS) distribution, is studied in some detail. This dis-
tribution is important because it is multimodal and generalizes the logistic dis-
tribution among others. Moments and order statistics are given. The reliability
P (X < Y ), for X and Y independent generalized logistic and beta-generated
MORS distributions, is obtained along with its particular cases. Also it is proved
that the beta-generated MORS distribution is an infinite linear combination of
a new distribution which is obtained from powers of MORS distribution. Max-
imum likelihood method is used to estimate the parameters of the distribution.
Four applications, with real data, are presented to illustrate the applicability of
the proposed distribution. For corresponding non-negative random variable, which
resulted in a generalization of the Harris extended exponential (HEE) distribution,
moments are obtained extending a recent result given for Marshall-Olkin exponen-
tial Weibull (MOEW) distribution.
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1. Introduction
In this article, we introduce a new tilted (skew) multimodal distribution with

four parameters illustrating its usefulness in modeling four real data sets. Since
it unifies a few previously available distributions, we hope that this new flexible
distribution will attract more future research work.

Estimation of parameters is done by likelihood maximization procedure. Our
model is very flexible to fit different unimodal and bimodal data. We could not
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provide a practical application of our distribution for trimodal data because no
such data was available for analysis. Bimodality generally result from a binary
causative factor which has not been measured in a given data set. So the data may
not be separated into two groups due to the unobservability of the causative factor.

In some cases, more than one model provides an adequate fit with only slight
changes in BIC or MSE values. In such cases, we may take into account the
interpretability of parameters or the standard errors of the estimates and get rid of
a parameter with high error. The heavy tailed generalized student-t distribution,
as an alternative to Lévy distribution has been used by Rathie et al. [15] to analyse
some stock exchange data.

The rest of this paper is divided as follows: we provide some definitions and
known results in Section 2. Section 3 deals with the tilted generalized logistic
distribution obtained by applying Marshall-Olkin procedure to the Rathie-Swamee
generalized logistic distribution. Hazard rate function and order statistics are also
included here. In Section 4, n-th moments and two particular cases are derived.
Reliability probability P (X < Y ) is calculated in Section 5, utilizing beta-generated
distribution. Section 6 deals with Marshall-Olkin exponential Weibull (MOEW)
distribution studied by Pogány et al. [9] and we derived n-th moments extending
their result. Beta-generated distribution, with MOEW as a base distribution, is
also derived which resulted in a generalization of the Harris extended exponential
(HEE) distribution. In Section 7, we use MLE procedure to estimate parameters
of the MORS distribution and apply to real data sets involving (a) Old Faithfull
Geyser data: waiting time and eruption duration; (b) Shrimp weight data; and (c)
Environmental Performance Index (EPI) data. In the last Section, we give a brief
summary concluding the work.

2. Generalized hypergeometric functions and known results

In this section, we give some definitions and results which will be used in this
article.

The G-function is defined as

Gm,n
p, q

[
x
∣∣∣ a1, ..., ap
b1, ..., bq

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xsds, (1)

where x 6= 0, an empty product is interpreted as unity, 0 ≤ m ≤ q and 0 ≤ n ≤ p
(not both m and n zeros simultaneously). The parameters bj, j = 1, 2, . . . ,m and
aj, j = 1, 2, . . . , n, are such that no pole of

∏m
j=1 Γ(bj − s) coincides with any pole

of
∏n

j=1 Γ(1 − aj + s). See Luke [4, pp. 143-144] for details about the contour L
and conditions of convergence of the integral.
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The H-function, which is a generalization of the G-function, is defined as

Hm,n
p, q

[
x
∣∣∣( a1, A1), ... ,( an, An),( an+1, An+1), ... ,( ap, Ap)

( b1, B1), ... ,( bm, Bm),( bm+1, Bm+1), ... ,( bq , Bq)

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj −Bjs)

∏n
j=1 Γ(1− aj + Ajs)∏q

j=m+1 Γ(1− bj +Bjs)
∏p

j=n+1 Γ(aj − Ajs)
xsds. (2)

For more details about H-function, see Mathai et al. [6].
The I-function, a generalization of the H-function, is defined as

Im,np, q

[
x
∣∣∣( a1, A1, α1), ... ,( an, An, αn),( an+1, An+1, αn+1), ... ,( ap, Ap, αp)

( b1, B1, β1), ... ,( bm, Bm, βm),( bm+1, Bm+1, βm+1), ... ,( bq , Bq , βq)

]
=

1

2πi

∫
L

∏m
j=1 Γβj(bj −Bjs)

∏n
j=1 Γαj(1− aj + Ajs)∏q

j=m+1 Γβj(1− bj +Bjs)
∏p

j=n+1 Γαj(aj − Ajs)
xsds, (3)

where αj, j = 1, . . . , p, and βj, j = 1, . . . , q, are positive quantities. For more
details about I-function, see Rathie [11].

For completeness, we give below a few results which will be used later on:

G1, 1
1, 1

[
x
∣∣∣1−a

0

]
=Γ(a)(1 + x)−a. (4)

exp(x) =
∞∑
r=0

xr

r!
. (5)

(1 + x)−2 =
∞∑
r=0

(−1)r(1 + r)xr. |x| < 1. (6)

∫ ∞
0

xα−1 exp(−βxγ)dx =
Γ
(
α
γ

)
γβ

α
γ

, α, β, γ > 0. (7)

2F1(a, b; c;x) =
∞∑
r=0

(a)r(b)r
r!(c)r

xr, for |x| < 1. (8)

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (9)

for c not a negative integer or zero and Re(c− a− b) > 0.
Using Mathai et al. [6],

I(α, β, γ, δ) =

∫ ∞
0

xα exp[−x(β + γxδ)]dx = β−α−1H1, 1
1, 1

[
βδ+1

γ

∣∣∣ (1, 1)

(α+1, γ+1)

]
, (10)
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and ∫ ∞
0

xs−1Hm1, n1
p1, q1

[
ηx
∣∣∣ 1(dj ,Dj)p1

1(ej ,Ej)q1

]
Hm,n
p, q

[
zxσ
∣∣∣ 1(aj ,Aj)p
1(bj ,Bj)q

]
dx

=η−sHm+n, n+m1
p+q, q+p1

[
zη−σ

∣∣∣ 1(aj ,Aj)n, 1(1−ej−sEj ,σEj)q1 , (n+1)(aj ,Aj)p

1(bj ,Bj)m, 1(1−dj−sDj ,σDj)p1 , (m+1)(bj ,Bj)q

]
. (11)

For conditions of existence etc., see Mathai et al. [6].

3. Marshall-Olkin-Rathie-Swamee distribution
In 2006, Rathie and Swamee [14] defined a multimodal distribution, for a ran-

dom variable X ∼ RS(a, b, p), as

F0(x) =
1

1 + exp[−x(a+ b|x|p)]
, (12)

with the corresponding density function given by

f0(x) =
[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]

{1 + exp[−x(a+ b|x|p)]}2
, (13)

for x ∈ (−∞,∞), a, b ≥ 0 (both a and b are not zeros simultaneously) and p ≥
−1. Clearly, the above distribution is a generalization of the well-known logistic
distribution. Also, for certain values of the parameters a, b and p, it approximates
well the normal distribution [12].

Applying the Marshall and Olkin [5] expression

F (x) =
F0(x)

F0(x) + αF 0(x)
, α > 0, x ∈ R, (14)

for F0(x) given in (12), the following tilted generalized logistic distribution is ge-
nerated:

F (x) =
1

1 + α exp[−x(a+ b|x|p)]
, (15)

where the parameter α may be regarded as a tilt parameter.
For various values of a, b, p and α, the density function

f(x) =
α[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]

{1 + α exp[−x(a+ b|x|p)]}2
, (16)

is plotted in Figure 1 showing multimodality of the distribution. We write X ∼
MORS(α, a, b, p) to indicate that X follows (15) and (16). We may also call X
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Figure 1: Some shapes for the MORS density.
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having Marshall-Olkin-Rathie-Swamee (MORS) distribution. For α = 1, (15) and
(16) yield (12) and (13) respectively.

Using a location parameter µ ∈ (−∞, ∞), (16) may be changed to g(x) as

g(x) =
α[a+ b(p+ 1)|x− µ|p] exp[−(x− µ)(a+ b|x− µ|p)]

{1 + α exp[−(x− µ)(a+ b|x− µ|p)]}2
. (17)

Notationally, (17) may be denoted by X ∼ MORS(α, a, b, p, µ). There is no need
to introduce a scale parameter σ, otherwise the density function will become non-
identifiable. In that case, a

σ
and b

σp+1 may be changed to parameters A and B
respectively to avoid non-identifiability.

We may observe that a and α control the peak at x = µ, the location parameter.
The shape parameters are a, b and p. Also, a and b have scale parameter included
non-explicitely. Roughly, b may affect the number of modes (for example, b = 0
implies unimodality) in conjunction with p; p separates the modes; and α introduces
skewness (tilt). The maximum number of three modes has been observed but there
is no mathematical proof so far.

The hazard rate function is defined by

h(x) =
f(x)

1− F (x)
,

which is an important concept for applications in life phenomena. In our case, it
is given by

h(x) =
[a+ b(p+ 1)|x|p]

{1 + α exp[−x(a+ b|x|p)]}
, x 6= 0.

It is interesting to note that

∂h(x)

∂α
= −f(x)

α
.

Shapes of the hazard rate function are shown in Figure 2 for certain values of the
parameters.
3.1. Order statistics

Let X1, X2, . . . , Xn be a random sample of size n from cumulative distribution
F (.). The cumulative distribution and density functions of the n-th order statistics
are given by

Fn(x) = [F (x)]n =
1

{1 + α exp[−x(a+ b|x|p)]}n
(18)
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Figure 2: Some shapes for the hazard rate function.
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and

fn(x) = n[F (x)]n−1f(x) =
nα[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]
{1 + α exp[−x(a+ b|x|p)]}n+1

(19)

respectively. For the 1st order statistics the cumulative distribution and density
functions are given by

F1(x) = 1− [1− F (x)]n = 1−
[

α exp[−x(a+ b|x|p)]
1 + α exp[−x(a+ b|x|p)]

]n
= 1− αn exp[−nx(a+ b|x|p)]

{1 + α exp[−x(a+ b|x|p)]}n
(20)

and

f1(x) = n[1− F (x)]n−1f(x) =
nαn exp[−nx(a+ b|x|p)][a+ b(p+ 1)|x|p]

{1 + α exp[−x(a+ b|x|p)]}n+1
(21)

respectively.
4. Moments

The n-th moment about the origin are giving by

E(Xn) = α

∫ ∞
−∞

xn[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]
{1 + α exp[−x(a+ b|x|p)]}2

dx

= α

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + α exp[−x(a+ bxp)]}2
dx

+(−1)nα

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[x(a+ bxp)]

{1 + α exp[x(a+ bxp)]}2
dx

= α

∫ ∞
0

xngα(x)dx+ (−1)n
1

α

∫ ∞
0

xng 1
α
(x)dx,

where

gα(x) =
xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + α exp[−x(a+ bxp)]}2
. (22)

Let

Jα =

∫ ∞
0

xngα(x)dx. (23)
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Then

Jα =

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]G1, 1
1, 1

[
α exp[−x(a+ bxp)]

∣∣∣−1
0

]
dx

=

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

×
{

1

2πi

∫
L

Γ(−s)Γ(2 + s){α exp[−x(a+ bxp)]}sds
}
dx, (Real(s) > 0)

(using (1))

=
1

2πi

∫
L

Γ(−s)Γ(2 + s)αs

×
{∫ ∞

0

xn[a+ b(p+ 1)xp] exp[−(1 + s)x(a+ bxp)]dx

}
ds (24)

=
∞∑
r=0

(−b)r

r!

1

2πi

∫
L

Γ(−s)Γ(2 + s)αs(1 + s)r

×
(∫ ∞

0

xn[a+ b(p+ 1)xp]x(p+1)r exp[−(1 + s)ax]dx

)
ds

(using (5))

=
∞∑
r=0

(−b)r

r!

1

2πi

∫
L

Γ(−s)Γ(2 + s)αs(1 + s)r{
a

Γ[n+ (p+ 1)r + 1]

[a(1 + s)]n+(p+1)r+1
+ b(p+ 1)

Γ[n+ (p+ 1)r + p+ 1]

[a(1 + s)]n+(p+1)r+p+1
)

}
ds

(using (7))

=
∞∑
r=0

(−b)r

r!

{
Γ[n+ (p+ 1)r + 1]

an+(p+1)r
I1 + b(p+ 1)

Γ[n+ (p+ 1)(r + 1)]

an+(p+1)(r+1)
Ip+1

}
,

(25)

where

Im =
1

2πi

∫
L

Γ(−s)Γ(2 + s)αs

(1 + s)n+pr+m
ds

=
1

2πi

∫
L

Γ(−s)[Γ(1 + s)]n+pr+mαs

[Γ(2 + s)]n+pr+m−1
ds

= G1, n+pr+m
n+pr+m,n+pr+m

[
α
∣∣∣ 0, ..., 0

0,−1, ...,−1

]
.(using (1))
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Hence

E(Xn) = αJα +
(−1)n

α
J 1
α
. (26)

For a = 0 or b = 0, the n-th moments are given by (26) where Jα is calculated
below for the two particular cases:

(i) For a = 0, in (24), we have

Jα = b(p+ 1)
1

2πi

∫
L

Γ(−s)Γ(2 + s)αs
{∫ ∞

0

xn+p exp[−(1 + s)bxp+1]dx

}
ds

= b(p+ 1)
1

2πi

∫
L

Γ(−s)Γ(2 + s)αs
Γ(n+p+1

p+1
)

(p+ 1)[b(1 + s)]
n+p+1
p+1

ds

(using (7))

=
Γ( n

p+1
+ 1)

b
n
p+1

1

2πi

∫
L

Γ(−s)Γ
n
p+1

+1(1 + s)

Γ
n
p+1 (2 + s)

αsds

=
Γ( n

p+1
+ 1)

b
n
p+1

I1, 11, 2

[
α
∣∣∣ (0,1, n

p+1
+1)

(0,1,1),(−1,1, n
p+1

)

]
. (27)

(using(3))

For n
p+1

an integer, the I-function reduces to a H-function which can also be written
as a G-function.

(ii) For b = 0, in (24), we get

Jα =
1

2πi

∫
L

Γ(−s)Γ(2 + s)αs
{∫ ∞

0

axn exp[−(1 + s)ax]dx

}
ds

=
a

2πi

∫
L

Γ(−s)Γ(2 + s)αs
Γ(n+ 1)

[(1 + s)a]n+1
ds

(using (7))

=
n!

an
1

2πi

∫
L

Γ(−s)α
sΓn+1(1 + s)

Γn(2 + s)
ds

=
n!

an
G1, n+1
n+1, n+1

[
α
∣∣∣ 0,...,0

0,−1,...,−1

]
. (28)

(using(1))
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5. Reliability
From Andrade and Rathie [1], for any base distribution F (x), we have

Fasy(x) =
1

B(α1, β1)

∫ F (x)

0

uα1−1(1− u)β1−1du

=
Fα1(x)

α1B(α1, β1)
2F1(α1, 1− β1; 1 + α1;F (x)) (29)

=
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

Fα1+r(x). (30)

(using (8))

From (30), we conclude that Fasy(x) is an infinite linear combination (or mix-
ture) of the generalized MORS distributions with parameters a, b, p, α and α1 + r
whose distribution function is

[F (x)]α1+r =
1

{1 + α exp[−x(a+ b|x|p)]}α1+r
. (31)

The corresponding density function is given by

fasy(x) =
f(x)[F (x)]α1−1[1− F (x)]β1−1

B(α1, β1)
(32)

=
αβ1 [a+ b(p+ 1)|x|p] exp[−β1x(a+ b|x|p)]
B(α1, β1){1 + α exp[−x(a+ b|x|p)]}α1+β1

, (33)

when (15) and (16) are used.
Let the density functions fasy(x) of X and f(y) of Y , then the reliability P (X <

Y ), when X and Y are independent, is given by

P (X < Y ) =

∫ ∞
−∞

∫ y

−∞
f(y)fasy(x)dxdy

=

∫ ∞
−∞

f(y)Fasy(y)dy.

For f(y) = f0(y) given by (13) and F (y) given by (15), where Y ∼ MORS
(α1, a1, b1, p1), we have
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P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

∫ ∞
−∞

f0(y)Fα1+r(y)dy.

Case 1: When a = a1, b = b1, p = p1, we have

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

I1,

where

I1 =

∫ ∞
−∞

f0(y)Fα1+r(y)dy

=

∫ ∞
−∞

[a+ b(p+ 1)|y|p] exp[−y(a+ b|y|p)]
{1 + exp[−y(a+ b|y|p)]}2{1 + α exp[−y(a+ b|y|p)]}α1+r

dy (34)

=

∫ ∞
0

dz

(1 + z)2(1 + αz)α1+r
(35)

(on substituting exp[−y(a+ b|y|p)] = z)

=
1

Γ(α1 + r)

∫ ∞
0

G1, 1
1, 1

[
z
∣∣∣−1

0

]
G1, 1

1, 1

[
αz
∣∣∣1−α1−r

0

]
dz

(using(4))

=
1

Γ(α1 + r)
G2, 2

2, 2

[
α
∣∣∣0, 1−α1−r

1, 0

]
.

(using(11))

For various conditions of validity, see Luke [4, pp. 162-164].
In this case,

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)rΓ(α1 + r)

G2, 2
2, 2

[
α
∣∣∣0, 1−α1−r

0, 1

]
=

1

B(α1, β1)

∞∑
r=0

(1− β1)r
r!Γ(1 + α1 + r)

G2, 2
2, 2

[
α
∣∣∣0, 1−α1−r

0, 1

]
.

It may observed that the reliability expression does not contain a, b and p.
For α = 1, (35) gives

I1 =

∫ ∞
0

dz

(1 + z)2+α1+r
=

1

1 + α1 + r
.
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Thus

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r(1 + α1 + r)

=
Γ(α1)

Γ(α1 + 2)B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(α1 + 2)r

=
Γ(α1 + β1)

Γ(α1 + 2)Γ(β1)
2F1(α1, 1− β1; 2 + α1; 1)

=
β1

α1 + β1
. (36)

(using (9))

Case 2: In the general case, we have

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

I, (37)

where

I =

∫ ∞
−∞

f0(y)Fα1+r(y)dy

=

∫ ∞
−∞

[a+ b(p+ 1)|y|p] exp[−y(a+ b|y|p)]
{1 + exp[−y(a+ b|y|p)]}2{1 + α exp[−y(a1 + b1|y|p1)]}α1+r

dy. (38)

As the above integral is not easy to evaluate, we consider two interesting particular
cases:

Subcase 2.1: When a = 0 = a1, p = p1 and denoting I by I1, we have

I1 =

∫ ∞
−∞

b(p+ 1)|y|p exp(−by|y|p)
[1 + exp(−by|y|p)]2[1 + α exp(−b1y|y|p)]α1+r

dy

=

∫ ∞
0

dz

(1 + z)2(1 + αz
b1
b )α1+r

,

where

exp(−by|y|p) = z.
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Thus

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

1

Γ(α1 + r)
H2, 2

2, 2

[
α
∣∣∣ (1−α1−r,1),(0, b1b )

(0,1),(1,
b1
b
)

]
.

(39)

(using (4) and (11))

Subcase 2.2: When b = 0 = b1 and denoting I by I2, we get

I2 =

∫ ∞
−∞

a exp(−ay)

[1 + exp(−ay)]2[1 + α exp(−a1y)]α1+r
dy

=

∫ ∞
0

dz

(1 + z)2(1 + αz
a1
a )α1+r

(substituting exp(−ay) = z)

=
1

Γ(α1 + r)

∫ ∞
0

G1, 1
1, 1

[
z
∣∣∣−1

0

]
G1, 1

1, 1

[
αz

a1
a

∣∣∣1−α1−r

0

]
dz.

(using (4))

Thus

P (X < Y ) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
r!(1 + α1)r

1

Γ(α1 + r)
H2, 2

2, 2

[
α
∣∣∣ (1−α1−r,1),(0,a1a )

(0,1),(1,
a1
a
)

]
.

(40)

(using (11))

6. MOEW distribution
The corresponding distribution and density functions for X > 0 are given by

F (x) =
1− exp[−x(a+ bxp)]

1 + α exp[−x(a+ bxp)]
(41)

and

f(x) =
(1 + α)[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + α exp[−x(a+ bxp)]}2
, (42)

respectively, where x > 0, a ≥ 0, b ≥ 0 (both not zero simultaneously) and p ≥ −1.
This distribution, under the name Marshall-Olkin exponential Weibull (MOEW)

distribution, was studied recently by Pogány et al. [9]. They obtained the n-th
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moments for |α| < 1. We derive the n-th moments for |α| < 1 in terms of an infinite
series involving H-function. Also, we give the n-th moments for α > 1, extending
their result.

6.1 Moments
Case 1: For |α| < 1, we have

E(Xn) = (1 + α)

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + α exp[−x(a+ bxp)]}2
dx

= (1 + α)
∞∑
r=0

(−1)r(1 + r)αr
∫ ∞
0

xn[a+ b(p+ 1)xp]

× exp[−(1 + r)x(a+ bxp)]dx (using(6))

= (1 + α)
∞∑
r=0

(−1)r(1 + r)αr
[
aI(n, (1 + r)a, (1 + r)b, p)

+ b(p+ 1)I(n+ p, (1 + r)a, (1 + r)b, p)
]
. (43)

(using(10))

Case 2: For α > 1, we have

E(Xn) = (1 + α)

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + α exp[−x(a+ bxp)]}2
dx

= (1 + α)

∫ ∞
0

xn[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

×G1, 1
1, 1

[
α exp[−x(a+ bxp)]

∣∣∣−1
0

]
dx (using(1))

= (1 + α)Jα, (44)

where Jα is given in (25).

6.2 Beta-generated MOEW distribution (BMOEW distribution)
Using (41) and (42) in (29) and (32) respectively, we get the BMOEW distri-

bution as

G(x) =
Fα1(x)

α1B(α1, β1)
2F1(α1, 1− β1; 1 + α1;F (x)), x > 0, (45)

and

g(x) =
(1 + α)β1 [a+ b(p+ 1)xp] exp[−β1x(a+ bxp)]{1− exp[−x(a+ bxp)]}α1−1

B(α1, β1){1 + α exp[−x(a+ bxp)]}α1+β1
,

(46)
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x > 0.
For α1 = 1, b = 0, we have

g(x) =
β1a(1 + α)β1 exp(−β1ax)

[1 + α exp(−ax)]1+β1
, x > 0. (47)

This is the HEE distribution [3] studied by Pinho et al. [8].

7. Parameter estimation and applications
The parameter vector θ = (a, b, p, µ, α)> of (17) can be estimated by the

method of maximum likelihood. The likelihood is given by L(θ) =
∏n

i=1 g(xi),
where g(xi) is given in (17). Thus,

L(θ) =
n∏
i=1

α[a+ b(p+ 1)|xi − µ|p] exp[−(xi − µ)(a+ b|xi − µ|p)]
{1 + α exp[−(xi − µ)(a+ b|xi − µ|p)]}2

=
αn
∏n

i=1[a+ b(p+ 1)|xi − µ|p] exp{−
∑n

i=1[(xi − µ)(a+ b|xi − µ|p)]}∏n
i=1{1 + α exp[−(xi − µ)(a+ b|xi − µ|p)]}2

(48)

and the log-likelihood function is given by

l(θ) = n ln(α) +
n∑
i=1

ln[a+ b(p+ 1)|xi − µ|p]−
n∑
i=1

[(xi − µ)(a+ b|xi − µ|p)]

−2
n∑
i=1

ln{1 + α exp[−(xi − µ)(a+ b|xi − µ|p)]}. (49)

The estimates for α̂, â, b̂, p̂ and µ̂ are obtained by solving simultaneously the
five equations obtained by equating to zero the partial derivatives of right hand
side of the (49) with respect to α, a, b, p and µ respectively. These equations
cannot be solved analytically and R program [10] has been used to solve them nu-
merically. We use the constrOptim routine to execute the maximization process.
This routine maximize the log-likelihood function subject to linear inequality con-
straints using an adaptive barrier algorithm. In our experience, the convergence of
the maximization procedure involving multimodal distributions (generalized flexi-
ble distributions) almost alway depends on the initial guesses. We used multiple
starts and the GenSA routine that searches for global minimum (or maximum) of a
function using simulated annealing.

Four applications of the MORS model are presented for the following real data
sets:
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1. Old Faithful Geyser data: waiting times (in mins) to the next eruption and
durations of the eruptions (in mins) available as a built-in data set in R
program [10].

2. Shrimp weights data from a study on morphometrical and molecular levels of
genetic variability in shrimp from the coast of Rio Grande do Norte, Brazil
(see [7]).

3. Environmental performance index (EPI) of 2012 countries from
http://epi.yale.edu/.

The estimates of the parameters for the MORS(α, a, b, p, µ) through maximum
likelihood method are obtained using constrOptim function of the R program.
The results are presented in Table 1. In Figure 3, we can see the fits of the

Table 1: Maximum likelihood estimates for MORS model.
Data set (sample size) α a b p µ
Waiting time (272) 1.7279 0.0265 0.0013 1.5105 66.4339
Eruption duration (272) 1.5191 0.2286 0.4674 2.9833 3.1819
Shrimp weight (120) 0.8105 0.0178 0.0353 0.7091 16.5993
EPI (132) 1.7533 0.1602 0.0000 3.9495 49.8589

MORS(α, a, b, p, µ) density and distribution functions for histogram and empirical
cumulative distribution functions (ecfd) for each of the data sets. From these plots,
we can say that the MORS model fits the data adequately. We apply Kolmogorov-
Smirnov (KS), Anderson-Darling (AD) and Cramér-von-Mises (CvM) tests to as-
sess the goodness of fit of the model. In general, the smaller the values of KS, AD
and CvM, the better the fit to the data. Table 2 gives the p-value for the three
tests. The tests are described in [16].

Table 2: p-values for KS, AD and CvM test.
Data set

Test Waiting time Eruption duration Shrimp weight EPI
KS 0.864 0.549 0.999 0.963
AD 0.888 0.293 0.980 0.963
CvM 0.895 0.551 0.998 0.998

All the test showed that we do not reject the hypothesis to fit the data using
MORS distribution.
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Figure 3: Adjusted MORS distribution for the four data sets: with histograms and
with the empirical distributions.
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Now, we compare the MORS model with the models presented by Andrade and
Rathie [1] for each data set. For EPI data the bimodal asymmetric power normal
(BAPN) model and for the other data sets the Rathie-Swamee asymmetric (RSA)
model are used. For these two models, only BIC and MSE were given in [1] as
indicated in Table 3.

1. Bimodal asymmetric power normal (BAPN) model [2]: the recentred-rescaled
BAPN model has density given by

f(z) = 2γσ−1
(

2γ−1

2γ − 1

)
φ(z)Φ(|z|)γ−1Φ(λz),

for z = (x − µ)/σ, x ∈ R, µ ∈ R, σ > 0, γ > 0, λ ∈ R, where Φ and φ
respectively are cumulative distribution and density of the standard normal.

2. Rathie-Swamee asymmetric (RSA) model [13]: the recentred RSA model has
density given by

f(y) =
2[a+ b(p+ 1)|y|p] exp[−y(a+ b|y|p)]

{1 + exp[−y(a+ b|y|p)]}2{1 + exp[−λy(a+ b|λy|p)]}
,

for y = x − µ, x ∈ R, µ ∈ R and a, b, p all non-negative but not all zeroes
simultaneously.

We used the Akaike Information Criterion (AIC), corrected Akaike Information
Criterion (AICc) and Bayesian Information Criterion (BIC). These criteria are
defined by

AIC = −2 log(f(x|θ)) + 2p,

BIC = −2 log(f(x|θ)) + p log(n),

AICc = −2 log(f(x|θ)) + 2p+

[
2p(p+ 1)

n− p− 1

]
,

where log(f(x|θ)) is the log-likelihood function, p the number of parameters of the
model and n the sample size. The best model is one that has least value according
to the criterion applied. The Table 3 show all these measures. In [1], the BAPN
and RSA models have the least values of BIC.

We also apply the measures of accuracy, Mean Square Error (MSE), Mean
Absolute Deviation (MAD) and Maximum Absolute Deviation (MaxAD), which
are given by
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MSE =

∑n
i=1 (Fe(xi)− F̂ (xi))

2

n
,

MAD =

∑n
i=1 |Fe(xi)− F̂ (xi)|

n
,

MaxAD = max(|Fe(xi)− F̂ (xi)|),

where Fe(xi), i = 1, . . . , n, is the empirical cumulative distribution and F̂ (xi) the
fitted cumulative distribution of the data. The best model has the lowest value
(close to zero) according to the criterion used. The results are shown in Table 3.
For waiting time data, the BIC values fo MORS and RSA models are close enough

Table 3: Model selection criterion and measures of accuracy.
Waiting time Eruption duration Shrimp weight EPI
MORS RSA MORS RSA MORS RSA MORS BAPN

AIC 2078.96 568.86 835.56 984.34
BIC 2096.99 2095 586.89 579 849.49 844 998.76 995
AICc 2079.18 569.09 836.08 984.82
MSE (×103) 0.42 0.4 0.40 0.9 0.17 0.8 0.30 0.4
MAD (×102) 1.06 1.70 1.06 1.37
MaxAD (×102) 3.64 4.47 2.74 4.36

and the MSE values differ at the fifth decimal place. For others data sets, the
BIC values for MORS model are slightly higher but the MSE values are lower,
especially for shrimp weight data. These results indicate that MORS model is a
good alternative for modeling the data.

8. Concluding remarks
The tilted generalized logistic MORS distribution is flexible for statistical analy-

sis of real data. It is multimodal and unifies a few previously proposed distributions,
including the logistic distribution. The beta-generated MORS distribution is an
infinite linear combination of another distribution. Moments, hazard rate function
and order statistics are derived. Maximum likelihood estimate method is used to
estimate the parameters. The various result are given in manageable forms which
are used in practical applications utilizing the existing numerical capabilities of the
computers. The practical data analysis applications demonstrated better fits, in
general, compared to existing earlier results.

The density function for the MORS model is very simple as compared to the
RSA model which is obtained by applying Azzalini method. We hope that the
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MORS distribution will provide wider applicability in general, and in reliability
studies, in particular, obtaining the corresponding results for other distributions
which are particular cases of our distribution.
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[9] Pogány, T. K., Saboor, A., and Provost, S., The Marshall-Olkin exponen-
tial Weibull distribution, Hacettepe Journal of Mathematics and Statistics,
44(6):1579-1594, 2015.

[10] R Core Team. R, A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2017. URL
https://www.R-project.org/.

[11] Rathie, A. K., A new generalization of generalized hypergeometric functions,
Le Matematiche, 52(2):297-310, 1997.

[12] Rathie, P. N., Normal distribution, univariate, In Lovric, M., editor, Interna-
tional Encyclopedia of Statistical Science, pages 1012-1013. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-04898-2.

[13] Rathie, P. N. and Coutinho, M., A new skew generalized logistic distribution
and approximations to skew normal distribution, Aligarh J Statist, 31:1-12,
2011.

[14] Rathie, P. N. and Swamee, P. K., On a new invertible generalized logistic
distribution approximation to normal distribution, Technical report 07, Univ.
of Brasilia, Brasilia, Brazil, 2006.

[15] Rathie, P. N., Coutinho, M., Sousa, T. R., Rodrigues, G. S., and Carrijo, T.
B., Stable and generalized-t distributions and applications, Communications
in Nonlinear Science and Numerical Simulation, 17(12):5088-5096, 2012.

[16] Thas, O., Comparing Distributions, Springer, New York, 2010.


