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Abstract: The notion of a weakly symmetric and weakly projective symmetric
Riemannian manifolds have been introduced and studied by L. Tamassy and T. Q.
Binh ([7], [8]). Recently, Singh and Khan [5] introduced the notion of special weakly
symmetric Riemannian manifolds and denoted such manifold by (SWS),. In this
paper, I have studied the nature of Ricci tensor R of type (1,1) in a special weakly
projective symmetric Riemannian manifold (SW PS),, and have investigated some
interesting result on (SWPS),.
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1. Introduction

Let M™ be an n-dimensional Riemannian manifold and (M) denote the set
of differentiable vector fields on M™. Let K(X,Y,Z) be the Riemannian curva-
ture tensor of type (1,3) for X,Y,Z € x(M). A non-flat Riemannian manifold
(M™, g), (n > 2) is called a special weakly symmetric Riemannian manifold [5], if
the curvature tensor K of type (1,3) satisfies the condition

(DxK)(Y, Z,V) = 20(X)K (Y, Z,V) + a(Y)K (X, Z,V) + «(Z)K (Y, X, V)
+a(V)K(Y, Z, X), (1.1)

where « is a non-zero 1- form. p is associated vector field such that

a(X) = g(X.p). (1.2)
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for every vector field X and D denotes the operator of covariant differentiation
with respect to the metric g. Such a manifold is denoted by (SWS),,. If we replace
K by P in (1.1), then it reduces to

(DxP)(Y, Z, V) = 20(X)P(Y, Z,V) + a(Y)P(X, Z,V) + a(Z)P(Y, X, V)

+a(V)P(Y, Z, X), (1.3)

where P is the projective curvature tensor defined by (see[5] and [6])

PY,Z,V)=K(,Z,V) - [Ric(Z, V)Y — Ric(Y,V)Z]. (1.4)

n—1
Here Ric is the Ricci tensor of type (0,2). Such an n— dimensional Riemannian
manifold shall be called a special weakly projective symmetric Riemannian mani-
fold and such a manifold is denoted by (SW PS),,.
Let
P(X,Y,Z,V)=g(P(X,Y,Z),V), (1.5)

then (1.4) reduces to the form

P(X,Y,Z, V)= K(X,Y,Z,V) — [Ric(Y, Z)g(X,V) — Ric(X, Z)g(Y, V)],

n—1
(1.6)
where
K(X,Y,2,V) = g(K(X,Y,2),V). (1.7)
Let
h(X7 V) = IP(X7 €i76iav)a (18)
then (1.6) gives
h(X,V) = " Rie(X,V) — ——g(X,V) (1.9)
) - n — 1 ) n — 19 ) ) .
where r is the scalar curvature.
If a Riemannian manifold is an Einstein manifold, then
Ric(X,Y) = Xg(X,Y), (1.10)

where A is constant. From(1.10), we have

R(X) = X, (1.11)
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where R is the Ricci tensor of type (1,1) and is defined by
g(R(X),Y) = Ric(X,Y). (1.12)

Contracting (1.11), we get
r=n\ (1.13)

The above results will be used in the next section.

2. Existence of a (SWPS),
Let (M",g) be a (SWPS),. Taking covariant derivative of (1.4) with respect
to X and then using (1.3), we get

2a(X)P(Y, Z, V) + a(Y)P(X, Z, V) + a(Z)P(Y, X, V) + a(V)P(Y, Z, X)

= (DxK)(Y, Z,V) — ﬁ[(DXRic)(Z, V)Y — (DxRic)(Y,V)Z].  (2.1)

By virtue of (1.4), the equation (2.1) reduces to

(DxK)Y, Z,V) = 2a(X)K(Y, Z,V) — o(Y)K (X, Z,V) — a(2)K(Y, X, V)

—a(V)K(Y, Z,X) - %[(DXRic)(Z, V)Y — (D Ric)(Y,V)Z
2a(X){Ric(Z,V)Y — Rie(Y,V)Z} — a(Y){Ric(Z,V)X — Ric(X,V)Z}
—a(Z){Ric(X, V)Y = Ric(Y, V)X }—a(V){Ric(Z, X))V —Ric(Y,X)Z}| =0 (2.2)

Permuting equation (2.2) twice with respect to X, Y, Z; adding the three obtained
equations and using Bianchi’s first and second identities; symmetric property of
Ricci tensor and the skew-symmetric properties of curvature tensor, we get

(DxRic)(Z, V)Y + (DyRic)(X,V)Z + (DzRic)(Y,V)X — (DxRic)(Y,V)Z

—(DyRic)(Z,V)X — (DzRic)(X,V)Y = 0. (2.3)
Contracting (2.3) with respect to X, we get

(DzRic)(Y,V) — (DyRic)(Z,V) =0. (2.4)
Consequently relation (2.4) gives
(DzR)(Y) — (DyR)(Z) = 0. (2.5)

This leads us to the following:
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Theorem 1. The Ricci tensor of type (1,1) is closed in special weakly projectively
symmetric Riemannian manifold.
Contracting (2.5) with respect to Y, we get

Zr =0,

which shows that the scalar curvature r is constant. Thus we have the following
result:

Theorem 2.The scalar curvature r is constant in case of a special weakly projec-
tively symmetric Riemannian manifold.

Now, let a non-flat Riemannian manifold (M",g) be a (SWPS), and let it
admit a unit parallel vector field V', that is

DxV =0 (2.6)

Applying Ricci identity to (2.6), we get

K(X,Y,V)=0 (2.7)
which in view of (1.7) gives
K(X,Y,Z,V)=0, (2.8)
and therefore
Ric(X,V) = 0. (2.9)

By virtue of (2.8) and (2.9), the relation (1.6) reduces to
P(X,Y,Z,V) = 0. (2.10)

Using (1.8) in (2.10), we get
h(X,V)=0. (2.11)

Taking an account of (2.11) and the fact that V' is a unit parallel vector field, it
follows from (2.5) that
r=0 (2.12)

Now from (1.8) and (1.3), we have
(Dzh)(X,V) = (Dz P)(X, e, e, V)

=2a(Z) P(X,e;,e;, V) +a(X) P(Z, e, V) + ale;) P(X, Z,e;, V)
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+a(e;) P(X, e, Z,V)+a(V) P(X, e, e, 7). (2.13)
Using (1.6), (2.6), (2.9), (2.11) and (2.12), the relation (2.13) takes the form
a(V)Ric(X,Z) = 0. (2.14)
Since a(V') # 0, it follows from (2.14) that
Ric(X,Z) =0. (2.15)
By virtue of the equation (2.15), the equation (1.4) gives
P(X,Y,Z) = K(X,Y, Z). (2.16)

But by virtue of (1.3) and (2.16), the relation (1.1) holds, that is, a special weakly
projective symmetric Riemannian manifold (SW PS),, reduces to a (SWS),,). Thus,
we have the following result:

Theorem 3. If a (SWPS),, admits a unit parallel vector field, then it is a (SW.S),.
By wvirtue of (1.10), the equation (1.4) reduces to the form

P(Y,Z,V)=K(Y,Z,V) -

A 1[g(Z, VY —g(Y,V)Z]. (2.17)

n—
Taking covariant derivative of (2.17) with respect to X, we get
(DxP)(Y,Z,V) = (DxK)(Y, Z,V). (2.18)
Using (1.3) in (2.18), we get
(DxK)(Y,Z,V) = 2a(X)P(Y, Z,V) + ao(Y)P(X, Z,V)
+a(Z)P(Y, X, V) + a(V)P(Y, Z, X) (2.19)

By virtue of (2.17), the equation (2.19) reduces to the from

(DxK)Y,2.V) = 20(X) [K(V.2.V) = -2 a2 V)Y = 9()2)]

+a(Y) [K(X, Z,V) - %{g(z, V)X — g(X, V)Z}}

+a(2) {K(Y, X,V) - %{g(){, V)Y — g(Y, V)X}}
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Yo(V) [K(Y,2,X) ~ 2 {g(Z, X)Y — (¥, X)Z)

From the above we can state the following:

Theorem 4. The necessary and sufficient condition for an Einstein (SW PS),, to
be a (SWS), is that

Ra(X)Y +a(Y)X]g(Z,V) — [20(X)Z + a(Z2)X]g(Y, V)

Ha(2)Y —a(V)Z)g(X, V) + a(V)[9(Z, X)Y — g(Y, X)Z] = 0.

3. Manifold satisfying P(Y,Z,V) =0
Let (M™, g) be a projectively flat, that is, P(Y,Z,V) = 0, then the relation
(1.4) reduces to

K(Y,2,V) =

[Ric(Z, V)Y — Ric(Y,V)Z]. (3.1)

n—1

Taking covariant derivative of (3.1) with respect to X, we have

(DxK)(Y,Z,V) = — -[(DxRic)(Z,V)Y — (DxRic)(Y,V)Z]. (3.2)

n —

Permuting equation (3.2) twice with respect to X, Y, Z; adding the three obtained
equations and then using Bianchi’s second identity, we have

(DxRic)(Z,V)Y + (DyRic)(X,V)Z + (DzRic)(Y,V)X
—(DxRic)(Y,V)Z — (DyRic)(Z,V)X — (DzRic)(X,V)Y =0.  (3.3)

An n—dimensional Riemannian manifold is called a special weakly Ricci symmetric
manifold (see [3]), if the Ricci tensor Ric of type (0, 2) satisfies the condition

(DxRic)(Y,V) = 2a(X)Ric(Y, Z) + a(Y)Ric(X, Z) + a(Z)Ric(Y, X),  (3.4)

where « is a non-zero 1-form. Such a manifold is denoted by (SWRS),. Now,
using (3.4) in (3.3), we have

a(X)Ric(Z, V)Y + a(Y)Ric(X,V)Z + a(Z)Ric(Y,V)X

—a(X)Ric(Y,V)Z — a(Y)Ric(Z,V)X — a(Z)Ric(X, V)Y = 0. (3.5)
Contracting (3.5) with respect to X, we have

a(Z)Ric(Y,V) —a(Y)Ric(Z,V) = 0. (3.6)
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Consequently (3.6) gives
a(Z)R(Y) — a(Y)R(Z) = 0.

Hence, we can state the following:

Theorem 5. In a projectively flat (SWRS),,, the 1-from « is collinear with the
Ricci tensor R.
TakingY =V =e¢; in (3.6) and performing a summation over i, we get

n

> [a(Z)Ric(e;, e;) — ae;)Rie(Z,e;)] = 0

i=1

or

nea(Z) — ale;)cle;, Z) =0 or cna(Z) — a(Z)] = 0.

By virtue of ¢ # 0, the above relation reduces to (n — 1)a(Z) = 0. Thus, this leads
us to the following:

Theorem 6: If a projectively flat Riemannian manifold admits a (SW RS),, , then
the 1— form a must vanish.
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