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Abstract: Kant et al [2] have given several expansions formulae concerning the
multivariable H-function. In this paper, we will give six results concerning the
expansion formulas involving the multivariable I-function defined by Prasad [5].
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1. Introduction and preliminaries

As explained by Srivastava [6], linearization relations of the Clebsch-Gordan
involving the sequence of polynomials {p,(z)}>°, and {¢,(z)}>2, and their gener-
alizations play an important role in various physical situations. Motivated by the
usefulness of such results, Srivastava presented a unified study of various classes
of polynomials expansions and multiplication theorems involving the generalized
Kampe de Fériet function of several variables. As applications of his results, Srivas-
tava [6] provided extensions of various Clebsch-Gordan type and Niukkanen type
linearization relations involving products of several Jacobi and Laguerre polynomi-
als. Inspired by the usefulness of the above mentioned results and works of Kant
et al [2], we aim to provide further generalizations of these results to the case of
the multivariable I-function defined by Prasad [5]. The results established here are
expected to be useful in various physical situations.
The multivariable I-function is defined in term of multiple Mellin-Barnes type in-
tegral
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The defined integral of the above function, the existence and convergence condi-
tions, see Y.N. Prasad [5].

The condition for absolute convergence of multiple Mellin-Barnes type contour
(1.9) can be obtained by extension of the corresponding conditions for multivari-
able H-function given by as: |arg z| < 3w, where
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where 1 =1, ...,r

The complex numbers z; are not zero. Throughout this document, we assume the
existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form:

I(z1, .y 2) = 0(|21 |, ... | 20|%7), max(| 2], ..., | 2]) = O

I(z1, o 2) = 021, o |2 ), min([21], oy [2]) = 00

where k =1,...,z; o} = min[Re(bg.k)/BJ(»k))],j =1,...,mg and 5] = maX[Re((ag-k) —
1)/a](.k))], j =1,...,n,. Throughout this paper, we will note. Let,

U = D2, 42,03, G35 - Pr—1, dr—1 (1.4)
V =0,n9;0,n3;...;0,n,_1 (1.5)
X =mW, nM: m pn) (1.6)

Y =pW ¢ 5 p™) ¢ (1.7)
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2. Required Results
The following two integrals are required in the sequel [3, page 59-60, egs.
3.6(13), 3.6(19)]
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provided: p < ¢, Re(o) > 0; Re(z) > 0 if p < ¢ and Re(z) = Re(w) if p = ¢
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provided: p < ¢+ 1, Re(B) > 0.
We also require the following expansion formula involving the polynomial DY (x)
given by
-m,1+B(1—a)™, (o)
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[see 4, page 156, eq (4.18)]
We have
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Lemme 1 For a > 0,a # 1
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Provided that the double series on the right of (2.3) are absolutely convergent.

The polynomials D (x) provides a generalization of Laguerre polynomials.
We have

Lemme 2

Fora; >0,i=1,...,n
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provided that Re(’yi—vl(i)) > —1, Re(ﬁj(-i)) > 0, Re(vj(-i)) >0,0<u;<1l;0=1,...n
j=1..p;l=1,..4q.

3. Expansions Formulae
Let
ORI A0 .
Ap =ul* upt o) >0k=1,..,ri=1,..n (3.1)
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also let b g
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Then for the set of extended Jacobi polynomials D,,(u;), given by
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We have
Theorem 1
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provided that Re(%—vl( )) > —1, Re(ﬁj(i)) > 0, Re(vj(i)) >0,0<u;<1l;i=1,..,n

Jj=1..,p;l=1,..q

Let
Ap=ul* Lupt sy >0k=1,..,ri=1..n (3.7)

also let

Q(B), (viM)] = — :
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provided that Re(ﬁ ) > 0, Re( ) >0,0<uy;<l;i=1,..,n7=1..,p; 1=
1,...,q and provided that the serles on the right of (3.12) is absolutely convergent.
The polynomial D} (u;) is a generalization of Laguerre polynomials.

Let

AS = Aa (_U_n;pla-"’pr)a (1_6_U+ma_n§P1a -"7p7”)7 (1_0_71_53,01» 7[07‘) l,q
(3.13)
BS = B7 (_U +m —n;p, --'apr>7 (1 — 0 =N = &;p1, -'-7pr>1,p (3 14)

Then for the set of polynomials Dl (u) given by
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we have
Theorem 3
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Provided that the double series on the right of (3.15) are absolutely convergent.
Proofs:

To establish (3.6), we first replace the multivariable I-function defined by Prasad
by the Mellin-Barnes contour integral with the help of (1.2), use the Lemme 2
given by (2.5) therein interchange the order of summation and integration (which
is easily seen to be justified due to the absolute convergence of the integral and
the summations involved in the process). Finally interpreting the resulting Mellin-
Barnes contour integral as the multivariable I-function defined by (1.2), we get the
desired formula (3.6).

If in (3.6), we replace z; by z;4;,¢ = 1,...,r and u; by u;/v;,7 = 1,...,n and let
7v; — 00, we obtain (3.12). The proof of (3.16) is similar to (3.6) with the help of
Lemme 1.

4. Extensions

In this section, further extensions of the expansion formulae (3.6), (3.12) and (3.16)
are provided by making use of the technique of Laplace transforms and inverse
Laplace transform by using (2.1) and (2.2) respectively, several times. We have the
following results.

Let
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Then for the set of extented Jacobi polynomials D,,(u;), given by
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Provided that the double series on the right of (4.9) are absolutely convergent.

Remark:

If U=V = A= B =0, the multivariable I-function defined by Prasad [5] reduces
to multivariable H-function defined by Srivastava et al [7], for more details, see
Kant et al [2].

5. Conclusion

In this paper we have evaluated the generalized expansions formulae concerning
the multivariable I-functions defined by Prasad [5]. The formulae established in this
paper is very general nature. Thus, the results established in this research work
would serve as a key formula from which, upon specializing the parameters, as
many as desired results involving the special functions of one and several variables
can be obtained.
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