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1. Introduction and preliminaries
Throughout in present paper, we use the following standard notations:
N := {1, 2, 3, . . .}, N0 := {0, 1, 2, 3, . . .} = N ∪ {0} and Z− := {−1,−2,−3, . . .} =
Z−0 \{0}. Here, as usual, Z denotes the set of integers, R denotes the set of real
numbers, R+ denotes the set of positive real numbers and C denotes the set of
complex numbers.
The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C) is defined, in
terms of the familiar Gamma function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0;λ ∈ C\{0})
λ(λ+ 1) . . . (λ+ n− 1) (ν = n ∈ N;λ ∈ C) ,

(1.1)
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it being understood conventionally that (0)0 = 1 and assumed tacitly that the
Gamma quotient exists.

The generalized hypergeometric function of one variable with p numerator pa-
rameters and q denominator parameters is defined by [16, p.42 Eq.(1)]

pFq

[
α1 , α2 , . . . , αp ;
β1 , β2 , . . . , βq ;

z

]
=
∞∑
n=0

(α1)n (α2)n . . .
(
αp

)
n

(β1)n (β2)n . . .
(
βq

)
n

zn

n!
. (1.2)

Here p and q are positive integers or zero (interpreting an empty product as 1),
and we assume that the variable z, the numerator parameters α1 , α2 , . . . , αp and
the denominator parameters β1 , β2 , . . . , βq take on complex values, provided that
βj 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Supposing that none of the numerator parameters is zero or a negative integer
(otherwise the question of convergence will not arise), and with the usual restriction
on βj, the pFq series in (1.2)
(i) converges for |z| <∞ if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,
(iii) diverges for all z, z 6= 0, if p > q + 1.

Furthermore, if we set

ω =

q∑
j=1

βj −
p∑
j=1

αj, (1.3)

it is known that the pFq series, with p = q + 1, is
(I) absolutely convergent for |z| = 1, if <(ω) > 0,
(II) conditionally convergent for |z| = 1, |z| 6= 1, if −1 < <(ω) ≤ 0,
(III) divergent for |z| = 1, if <(ω) ≤ −1.

The idea of separation of a power series into its even and odd terms, exhibited
by the elementary identity

∞∑
n=0

Φ(n) =
∞∑
n=0

Φ(2n) +
∞∑
n=0

Φ(2n+ 1) , (1.4)

is at least as old as the series themselves. Indeed, when (1.4) is applied to the
generalized hypergeometric series (1.2), we are led rather immediately to the elegant
result subject to the suitable convergence condition,

pFq

[
α1 , α2 , . . . , αp ;
β1 , β2 , . . . , βq ;

z

]
= 2pF2q+1

[ α1

2
,
1+α1

2
, . . . ,

αp

2
,
1+αp

2
;

1
2
,
β1
2
,
1+β1

2
, . . . ,

βq
2
,
1+βq

2
;

z2

41−p+q

]
+
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+z
α1 . . . αp
β1 . . . βq

2pF2q+1

[ 1+α1

2
,
2+α1

2
, . . . ,

1+αp

2
,
2+αp

2
;

3
2
,
1+β1

2
,
2+β1

2
, . . . ,

1+βq
2
,
2+βq

2
;

z2

41−p+q

]
. (1.5)

The history of the series identity (1.5) is remarkably fascinating. It was given
in 1954 by MacRobert [3, p. 95, Eq. (8)] in terms of his E - function.

Ever since over a decade after the publication of MacRobert’s paper [3], the
hypergeometric series identity (1.5) has been rediscovered a number of times. For
instance, it was published in 1966 by Srivastava [15, p.763], in 1969 by Barr [1,
p.591, Eq. (1)], in 1970 by Carlson [2, p.234, Eq.(10)], and in 1974 by Manocha [5,
p.43, Eq. (3)]. Later on, it has been claimed as a ”new” result by Sharma [13, p.
95 Eq. (1)] who apparently rederived it in his supposedly earlier paper [12] which,
in fact, has just appeared. {See also [13], p. 99, Line 6.} Except Carlson [2] who
did (after having completed the revision of his paper) attribute (1.5) to MacRobert
[3], and possibly Barr [1] whose work was indeed motivated by Srivastava’s paper
[15], these authors do not exhibit their familiarity with the available literature on
the hypergeometric series identity(1.5). The second term on the right-hand side of
(1.5) was missing in Srivastava’s paper [15, p. 763]; in fact, it was subsequently
pointed out by Barr [1, p. 592].

The classical Hermite’s polynomials Hn(x) are defined by means of the following
linear generating relation [11, p.187 eq(1)]

exp(2xt− t2) =
∞∑
n=0

Hn(x)tn

n!
, (1.6)

which is valid for all finite values of x and t.
Hypergeometric form of classical Hermite polynomials are given below

Hn(x) = (2x)n2F0

[
−n

2
,−n

2
+ 1

2
;

− ;
− 1

x2

]
, (1.7)

H2n(x) = (2x)2n2F0

[
−n, 1

2
− n ;

− ;
− 1

x2

]
, (1.8)

H2n+1(x) = (2x)2n+1
2F0

[
−n,−1

2
− n;

− ;
− 1

x2

]
. (1.9)

If a three-variable function F (x, y, t) possesses a formal power series expansion
in t such that

F (x, y, t) =
∞∑
n=0

γnfn(x)fn(y)tn,
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where the sequence {γn}∞n=0 is independent of x, y and t, then F (x, y, t) is called a
bilinear generating function for the set {fn(x)}∞n=0.
More generally, if F(x, y, t) can be expanded in powers of t in the form

F(x, y, t) =
∞∑
n=0

γnfα(n)(x)fβ(n)(y)tn,

where α(n) and β(n) are the functions of n which are not necessarily equal, we
shall still call F(x, y, t) a bilinear generating function for the set {fn(x)}∞n=0.

F. G. Mehler’s formula [11, p. 198 eq(2)]:

∞∑
n=0

Hn(x)Hn(y)
tn

n!
= (1− 4t2)−

1
2 exp

(
4xyt− 4(x2 + y2)t2

1− 4t2

)
, (1.10)

= (1− 4t2)−
1
2 exp

[
y2 − (y − 2xt)2

1− 4t2

]
, (1.11)

= (1− 4t2)−
1
2 exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

)
, (1.12)

where |t2| < 1
4
.

In our analysis, we shall apply the equation (1.12).
The hypergeometric form of Binomial expansion (1− z)−a is given by

(1− z)−a = 1F0

[
a ;
− ;

z

]
=
∞∑
r=0

(a)rz
r

r!
, (1.13)

where |z| < 1, and a 6= 0,-1,-2,-3,....
Motivated by the work of Carlson [2], MacRobert [3-4], Manocha [5], Mohd. et al.
[6], Qureshi and Ahmad [7], Qureshi, Quraishi and Pal [8], Qureshi, Yasmeen and
Pathan [9] and Sharma [12-14], we shall obtain some bilinear generating relations
associated with classical Hermite’s polynomials of even and odd degree, using series
decomposition formula (1.4).

2. Bilinear Generating Relations (Different Forms)
Any values of parameters and variables leading to the results which do not make
sense, are tacitly excluded (suppose x, y are real numbers and |t| < 1

4
), then

∞∑
n=0

H2n(x)H2n(y)
tn

(2n)!
= (1− 4t)−

1
2 exp

(
−4t(x2 + y2)

1− 4t

)
0F1

[
− ;
1
2

;

4x2y2t

(1− 4t)2

]
,

(2.1)
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∞∑
n=0

H2n+1(x)H2n+1(y)
tn

(2n+ 1)!

= 4xy(1− 4t)−
3
2 exp

(
−4t(x2 + y2)

1− 4t

)
0F1

[
− ;
3
2

;

4x2y2t

(1− 4t)2

]
, (2.2)

∞∑
n=0

H2n(x)H2n(y)
tn

(2n)!
= (1− 4t)−

1
2 cosh

(
4xy
√
t

1− 4t

)
×

×
{

0F1

[
− ;
1
2

;

4(x2 + y2)2t2

(1− 4t)2

]
− 4(x2 + y2)t

1− 4t
0F1

[
− ;
3
2

;

4(x2 + y2)2t2

(1− 4t)2

]}
, (2.3)

∞∑
n=0

H2n+1(x)H2n+1(y)
tn

(2n+ 1)!
= (1− 4t)−

1
2

1√
t

sinh

(
4xy
√
t

1− 4t

)
×

×
{

0F1

[
− ;
1
2

;

4(x2 + y2)2t2

(1− 4t)2

]
− 4(x2 + y2)t

1− 4t
0F1

[
− ;
3
2

;

4(x2 + y2)2t2

(1− 4t)2

]}
, (2.4)

∞∑
n=0

H2n(x)H2n(y)
tn

(2n)!
= cosh

(
4xy
√
t

1− 4t

)
exp

(
−4(x2 + y2)t

1− 4t

)

×

{
2F1

[
1
4
, 3
4
;

1
2
;

16t2

]
+ 2t 2F1

[
3
4
, 5
4
;

3
2
;

16t2

]}
, (2.5)

∞∑
n=0

H2n+1(x)H2n+1(y)
tn

(2n+ 1)!
=

1√
t

sinh

(
4xy
√
t

1− 4t

)
exp

(
−4(x2 + y2)t

1− 4t

)

×

{
2F1

[
1
4
, 3
4
;

1
2

;
16t2

]
+ 2t 2F1

[
3
4
, 5
4
;

3
2

;
16t2

]}
. (2.6)

3. Derivations of Bilinear Generating Relations Using Different Ap-
proaches
First approach
Consider Mehler’s formula (1.12):

∞∑
n=0

Hn(x)Hn(y)
tn

n!
= (1− 4t2)−

1
2 exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

)
, (3.1)

= (1− 4t2)−
1
2 exp

(
−4(x2 + y2)t2

1− 4t2

) ∞∑
r=0

(
4xyt
1−4t2

)r
r!

. (3.2)
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Now apply series decomposition identity (1.4), we obtain

∞∑
n=0

H2n(x)H2n(y)
t2n

(2n)!
+ t

∞∑
n=0

H2n+1(x)H2n+1(y)
t2n

(2n+ 1)!

= (1− 4t2)−
1
2 exp

(
−4(x2 + y2)t2

1− 4t2

)[ ∞∑
r=0

(
4xyt
1−4t2

)2r
(2r)!

+
∞∑
r=0

(
4xyt
1−4t2

)2r+1

(2r + 1)!

]
. (3.3)

Putting t = iT or t2 = −T 2, we have

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
+ iT

∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!
= (1 + 4T 2)−

1
2

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[ ∞∑
r=0

(
4xy

1+4T 2

)2r
(−T 2)r

(2r)!
+
∞∑
r=0

(
4xy

1+4T 2

)2r+1
(iT )(−T 2)r

(2r + 1)!

]
.

(3.4)
Suppose x and y are real numbers then equating real and imaginary parts, we get

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
= (1 + 4T 2)−

1
2

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[ ∞∑
r=0

(16x2y2)r(−T 2)r

[(1 + 4T 2)2]r2(2r)
(
1
2

)
r
r!

]
, (3.5)

= (1 + 4T 2)−
1
2 exp

(
4(x2 + y2)T 2

1 + 4T 2

)
0F1

[
− ;
1
2

;

(−16x2y2T 2)

[4(1 + 4T 2)2]

]
. (3.6)

∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!
= (1 + 4T 2)−

1
2 exp

(
4(x2 + y2)T 2

1 + 4T 2

)
×

× 4xy

(1 + 4T 2)

[
∞∑
r=0

(16x2y2)r(−T 2)r

[(1 + 4T 2)2]r2(2r)
(
3
2

)
r
r!

]
, (3.7)

= (1 + 4T 2)−
1
2 exp

(
4(x2 + y2)T 2

1 + 4T 2

)
4xy

(1 + 4T 2)
0F1

[
− ;
3
2

;

(−16x2y2T 2)

[4(1 + 4T 2)2]

]
. (3.8)

Finally putting T = i
√
t or T 2 = −t in equations (3.6) and (3.8), we get generating

relations (2.1) and (2.2) respectively.
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Second approach
Again consider Mehler’s formula (1.12) in the form:

∞∑
n=0

Hn(x)Hn(y)
tn

n!
= (1− 4t2)−

1
2 exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

)
, (3.9)

= (1− 4t2)−
1
2 exp

(
4xyt

1− 4t2

) ∞∑
r=0

(
−4(x2 + y2)t2

1− 4t2

)r
1

r!
. (3.10)

Now apply series decomposition identity (1.4), we obtain

∞∑
n=0

H2n(x)H2n(y)
t2n

(2n)!
+ t

∞∑
n=0

H2n+1(x)H2n+1(y)
t2n

(2n+ 1)!

= (1− 4t2)−
1
2 exp

(
4xyt

1− 4t2

)
×

×

[
∞∑
r=0

(
−4(x2 + y2)t2

1− 4t2

)2r
1

2r!
− 4(x2 + y2)t2

1− 4t2

∞∑
r=0

(
−4(x2 + y2)t2

1− 4t2

)2r
1

(2r + 1)!

]
.

(3.11)
Putting t = iT or t2 = −T 2, we obtain

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
+ iT

∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!

= (1 + 4T 2)−
1
2 exp

(
i4xyT

1 + 4T 2

)
×

×

[
∞∑
r=0

(
4(x2 + y2)T 2

1 + 4T 2

)2r
1

2r!
+

4(x2 + y2)T 2

1 + 4T 2

∞∑
r=0

(
4(x2 + y2)T 2

1 + 4T 2

)2r
1

(2r + 1)!

]
.

(3.12)
Now equating real and imaginary parts in equation (3.12), we obtain:

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
= (1 + 4T 2)−

1
2 cos

(
4xyT

1 + 4T 2

)[ ∞∑
r=0

(
16(x2 + y2)2T 4

(1 + 4T 2)2

)r
1

22rr!(1
2
)r

+
4(x2 + y2)T 2

1 + 4T 2

∞∑
r=0

(
16(x2 + y2)2T 4

(1 + 4T 2)2

)r
1

22rr!(3
2
)r

]
, (3.13)
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∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!

= (1 + 4T 2)−
1
2

1

T
sin

(
4xyT

1 + 4T 2

)[ ∞∑
r=0

(
16(x2 + y2)2T 4

(1 + 4T 2)2

)r
1

22rr!(1
2
)r

+
4(x2 + y2)T 2

1 + 4T 2

∞∑
r=0

(
16(x2 + y2)2T 4

(1 + 4T 2)2

)r
1

22rr!(3
2
)r

]
. (3.14)

Finally putting T = i
√
t or T 2 = −t in equations (3.13) and (3.14), we get gener-

ating relations (2.3) and (2.4) respectively.

Third approach
Further consider the Mehler’s formula in the form:

∞∑
n=0

Hn(x)Hn(y)
tn

n!
= (1− 4t2)−

1
2 exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

)
, (3.15)

= exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

)
1F0

[
1
2
;
−;

4t2
]
, (3.16)

= exp

(
4xyt

1− 4t2

)
exp

(
−4(x2 + y2)t2

1− 4t2

) ∞∑
r=0

(
1

2

)
r

(4t2)r

r!
, (3.17)

where |4t2| < 1.
Now apply series decomposition identity (1.4), we get

∞∑
n=0

H2n(x)H2n(y)
t2n

(2n)!
+ t

∞∑
n=0

H2n+1(x)H2n+1(y)
t2n

(2n+ 1)!
= exp

(
4xyt

1− 4t2

)
×

× exp

(
−4(x2 + y2)t2

1− 4t2

)[ ∞∑
r=0

(
1

2

)
2r

(4t2)2r

(2r)!
+
∞∑
r=0

(
1

2

)
2r+1

(4t2)2r+1

(2r + 1)!

]
. (3.18)

Putting t = iT or t2 = −T 2, we have

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
+iT

∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!
= exp

(
i4xyT

1 + 4T 2

)
×

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[ ∞∑
r=0

(
1

2

)
2r

(−4T 2)2r

(2r)!
+

1

2
(−4T 2)

∞∑
r=0

(
3

2

)
2r

(−4T 2)2r

(2r + 1)!

]
,

(3.19)
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= exp

(
i4xyT

1 + 4T 2

)
exp

(
4(x2 + y2)T 2

1 + 4T 2

)[ ∞∑
r=0

22r

(
1

4

)
r

(
1

4
+

1

2

)
r

(16T 4)r

22rr!
(
1
2

)
r

− (2T 2)
∞∑
r=0

22r

(
3

4

)
r

(
3

4
+

1

2

)
r

(16T 4)r

22rr!
(
3
2

)
r

]
, (3.20)

=

{
cos

(
4xyT

1 + 4T 2

)
+ i sin

(
4xyT

1 + 4T 2

)}
×

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[
2F1

(
1
4
, 3
4
;

1
2

;
16T 4

)
− 2T 2

2F1

(
3
4
, 5
4
;

3
2

;
16T 4

)]
. (3.21)

Now equating real and imaginary parts in equation (3.21), we obtain

∞∑
n=0

H2n(x)H2n(y)
(−T 2)n

(2n)!
=

{
cos

(
4xyT

1 + 4T 2

)}
×

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[
2F1

(
1
4
, 3
4
;

1
2

;
16T 4

)
− 2T 2

2F1

(
3
4
, 5
4
;

3
2

;
16T 4

)]
, (3.22)

∞∑
n=0

H2n+1(x)H2n+1(y)
(−T 2)n

(2n+ 1)!
=

1

T

{
sin

(
4xyT

1 + 4T 2

)}
×

× exp

(
4(x2 + y2)T 2

1 + 4T 2

)[
2F1

(
1
4
, 3
4
;

1
2

;
16T 4

)
− 2T 2

2F1

(
3
4
, 5
4
;

3
2

;
16T 4

)]
. (3.23)

Finally putting T = i
√
t or T 2 = −t in equations (3.23) and (3.24), we get gener-

ating relations (2.5) and (2.6) respectively.
We conclude our present investigation, by observing that several bilinear generating
relations can be obtained from known generating relations, in analogous manner.
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