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Abstract: Theory of photonic crystals includes an extensive study of electromag-
netism and optics in conjunction with solid state physics. Many things have been
known for over a century and I want to explore how the calculation on photonic
crystal emanates from the theories of electromagnetic waves, basic material optics
and some concepts from the field of solid state physics. The electromagnetic wave
interacts at the interfaces of the building blocks in the photonic crystals. Maxwells
equations can be used to predict the photonic behavior of light propagating in the
structure in terms of Bloch functions, band structures and band gaps with the
application of transfer matrix method.
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1. Introduction
The band structure of photonic crystals (PCs) can be calculated in mainly three

fashions: either by a Plane Wave (PW) method [1], with a Finite Difference Time
Domain (FDTD) method [2] or with a Transfer Matrix Method (TMM) [3].

All of these methods calculate with high efficiency and accuracy and are in good
agreement with experimental results. These methods are chosen according to the
problem tackled. The PW method is a straight-forward method, which assumes a
linear combination of plane waves as a solution for Maxwell’s equation on a defined
lattice. It is very easy to implement and obtain the band structure when the
direction is specified. The codes give all the propagating/evanescent energies for
that direction. A defect in the infinite photonic crystal will be treated using a super-
cell. Many results have been obtained with this method [4-5]. The limitation of the
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method is linked to the memory storage that depends on the number of plane waves
used for the expansion of the field, and this number escalates when the photonic
crystal diverges from a periodic structure. The calculation of sophisticated defects
is not possible by this method.

The FDTD method is used to calculate photonic band gap (PBG) and opti-
cal properties of photonic crystals with dispersive media of 2-D and 3-D photonic
structures. It analyses the Maxwell’s equations in time domain and the results
are in good agreement with experimental measurements as found in [6-7]. Many
works on photonic crystals have been reported using this method. To obtain the
transmission spectrum of the crystal, an electromagnetic pulse is sent on the ma-
terial and the output signal is recorded. Electromagnetic modes of a defect can be
calculated as the transmission ratio of the material. A fast Fourier transform is
applied to both incident and transmitted signals and the transmission spectrum is
calculated. The FDTD method allows the simulation of finite or infinite crystals
with inner or outer electromagnetic sources. In some cases, this method permits
the simulation of an entire experimental setup with a photonic crystal. Results of
this experiment are then analyzed. This is the most common technique to simulate
a photonic crystal. The limitation of this method is the size of the memory to cal-
culate a large crystal and the lack of an accurate electromagnetic model for some
particular objects like thin wires for example. Another advantage of this method
is the attractive capability to simulate nonlinear materials [2].

The band structure for dispersive materials in 1-D, 2-D and 3-D photonic struc-
tures is calculated by the Transfer Matrix Method (TMM)[3]. The TMM consists
on writing the Maxwell’s equations in the k-space and rewriting them on a mesh.
It performs the operation with layer by layer calculations. Structures with defects
can be dealt only by considering a super-cell. The band structures, reflectivity
and transmission coefficients can be found by this method easily. Many researchers
have used this method [8-9]. It has also proved very useful and accurate when com-
parisons with experimental structures are undertaken. But it is difficult to deal
with the geometry different from cubic geometry by this method. Also, memory
storage is the limitation of this method.

In this paper, TMM method is adopted for the calculations of photonic band
gap structure and optical properties of one-dimensional photonic crystals.

2. Mathematical Formulation

The wave behaviour in one-dimensional periodic lattice can be described by us-
ing the transfer matrix method (TMM). This method is largely based on interfaces
of the two layers [3, 10-15].
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Maxwell’s electromagnetic equations are given as,

−→
∇ .
−→
D = ρ (2.1)

−→
∇ .
−→
B = 0 (2.2)

−→
∇ ×

−→
E = −∂

−→
B

∂t
(2.3)

−→
∇ ×

−→
H =

−→
J +

∂
−→
D

∂t
(2.4)

Here,
−→
E and

−→
H are the electric field vector and magnetic field vector respectively.

These two field vectors describe the electromagnetic field.
−→
D (Electric displace-

ment) and
−→
B (magnetic induction) are introduced to include the effect of the field

on matter. The quantities ρ (electric charge density) and
−→
J (current density) may

be considered as the sources of the fields
−→
E and

−→
H . The electromagnetic field can

be determined completely by these equations.
Maxwell’s equations consist of 8 scalar equations that relate a total of 12 vari-

ables, 3 for each of the 4 vectors
−→
E ,
−→
H,
−→
D and

−→
B . They cannot be solved uniquely

unless the relationship between
−→
B and

−→
H and that between

−→
E and

−→
D are known

to obtain a unique determination of the field vectors. The material equations are,

−→
D = ε

−→
E = ε0

−→
E +

−→
P (2.5)

−→
B = µ

−→
H = µ0

−→
H +

−→
M (2.6)

where the constitutive parameters ε and µ are tensors of rank 2 and are known as
the dielectric tensor (or permittivity tensor) and the permeability tensor, respec-

tively,
−→
P and

−→
M are electric and magnetic polarization, respectively. The constant

ε0 is called the permittivity of a vacuum and has a value of 8.854×10−12 F/m. The
constant µ0 is known as the permeability of a vacuum. For the isotropic medium,
both ε and µ tensors reduce to scalars. The quantities ε and µ are assumed to
be independent of the field strengths. But for the sufficiently strong field, the

dependence of these quantities on
−→
E and

−→
H must be considered.

For dielectric materials, electric polarization is linear (
−→
P = 0), independent of

and magnetic polarization is non-magnetic (
−→
M = 0) and absorption of light is also

mathematically neglected. The assumptions are applying for dielectric photonic
crystal where ε is real valued. But for the metallic photonic crystal, I assume that
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electric polarization is linearly dependent on
−→
E and non-magnetic and for negative

index material structure, both electric polarization and magnetic polarizations are

considered as dispersive materials (
−→
P 6= 0 and

−→
M 6= 0), linearly dependent on

−→
E

and
−→
H .

The electric field E and the magnetic field H can be written as product of a
function of the position and a function depending only on the time as,

−→
E (r, t) =

−→
E (r)e−iωt+i

−→
k .−→r and

−→
H (r, t) =

−→
H (r)e−iωt+i

−→
k .−→r

Hence, for the Maxwell’s equation,

∂

∂t
↔ −iω (2.7)

and
∂

∂x
↔ −ik (2.8)

Equation (2.3) and (2.4) implies to,

−→
∇ ×

−→
H = −iωε

−→
E (2.9)

−→
∇ ×

−→
E = +iωµ

−→
H (2.10)

The electric field component is perpendicular to the plain of propagation for the TE-
mode and the magnetic field component is perpendicular to the plain of propagation
for the TM-mode. In the consequence of the equations (2.7) and (2.8), equation
(2.1) becomes,

−→
∇ .
−→
D = (

−→
∇ε.
−→
E + ε

−→
∇ .
−→
E )e−iωt

or −→
∇ .
−→
D = ε

−→
∇ .
−→
Ee−iωt (2.11)

and equations (2.1) and (2.2) simplifying to,

−→
∇ .
−→
E = 0 (2.12)

−→
∇ .
−→
H = 0 (2.13)

and equation only for E can obtained by taking the cross product of equation (2.10)
and combining it with equation (2.9),

−→
∇ ×

−→
∇ ×

−→
E = ω2µεE (2.14)
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and using the identity for the vector operation
−→
∇ ×

−→
∇ ×

−→
E =

−→
∇(
−→
∇ .
−→
E )−

−→
∇2−→E ,

which lead to the equation for E as,

−→
∇2−→E +

ω2

c2
εrµr
−→
E = 0 (2.15)

and
−→
∇2−→H +

ω2

c2
εrµr
−→
H = 0 (2.16)

where c2 =
1

ε0µ0

, εr =
ε

ε0
, µr =

µ

µ0

. This equation (2.15 or 2.16) is the Helmholtz

equation and further in this paper, we omit the subscript r in εr and µr for the sake
of simplicity. For non-magnetic materials, µr = 1, the equation (2.9) and (2.10)
becomes −→

∇ ×
−→
H = −iωεrε0

−→
E (2.17)

−→
∇ ×

−→
E = +iωµ0

−→
H (2.18)

These equations can be decoupled by dividing the equation (2.17) by ε, and then

taking the curl. After using equation (2.18), we can eliminate
−→
E . The result is an

equation entirely in
−→
H .

−→
∇ × 1

εr

−→
∇ ×

−→
H = ω2ε0µ0

−→
H or

−→
∇ × 1

εr

−→
∇ ×

−→
H =

ω2

c2
−→
H (2.19)

The equation (2.19) is known as the Master Equation for Photonic Band Gap
materials or Photonic Crystals [14, 15].

Now, consider a periodic arrangement of a multilayer film, with refractive in-
dices n1 and n2 and each having thicknesses d1 and d2 respectively. The solution for
the master equation will be the superposition of plane waves traveling to the right
and to the left. Say, the right going and left going plane waves have amplitudes A1

and B1, for layer with index n1, respectively and for layer with index n2, the right
going and left going plane waves have amplitudes C1 and D1 respectively. Hence,
for layer with index n1 the solution of equation (2.15) is,

−→
E (x) = A1e

ik1xx +B1e
−ik1xx (2.20)

−→
E (x) = C1e

ik2x(x−d1) +D1e
−ik2x(x−d1) (2.21)

for the layer with index n2. The parameter k1x and k2x will be called the wave
number, and the definition is given by the equation;

k1x =
ω

c
n1 cos θ1 and k2x =

ω

c
n2 cos θ2 (2.22)
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where, θ1 and θ2 are the ray angles in the two mediums respectively.

Figure 1 Schematic diagram of bilayer unit cells of refractive indices n1 and n2 with
thicknesses d1 and d2 respectively.

At the interface between layers (x = d1), the solution and its derivative should
be continuous. This gives a relation between plane waves amplitude:(

C1

D1

)
= M12

(
A1

B1

)
(2.23)

with

M12 =


1

2

(
1 +

k1x
k2x

)
eik1xd1

1

2

(
1− k1x

k2x

)
e−ik1xd1

1

2

(
1− k1x

k2x

)
eik1xd1

1

2

(
1 +

k1x
k2x

)
e−ik1xd1

 (2.24)

and, also at x = d, the continuity of the plane waves at the interface between layers
with indices n2 and n1 and its derivative gives(

A2

B2

)
= M21

(
C1

D1

)
(2.25)

where the matrix M21 is the same as (2.24) but with interchanging the indices.
From the two matrix equations (2.23) and (2.25), we have,(

A2

B2

)
= M21M12

(
A1

B1

)
or

(
A2

B2

)
= Mi,j

(
A1

B1

)
(2.26)

where Mi,j = M21M12.
The matrix element of the matrix Mi,j is given by,

M1,1 = eik1xd1
[
cos(k2xd2) +

1

2
i

(
γ +

1

γ

)
sin(k2xd2)

]
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M1,2 = e−ik1xd1
[
cos(k2xd2) +

1

2
i

(
1

γ
− γ
)

sin(k2xd2)

]
M2,1 = M1,2, M2,2 = M1,1,

where kjx =
ω

c
nj cos θj and γ =

k1x
k2x

for TE mode, and γ =
k1x × n2

2

k2x × n2
1

for TM mode.

The matrix Mi,j is called as the transfer matrix of one unit of the periodic
lattice. The matrix Mi,j depends on the frequency ω, and it is unimodular (it is
a square matrix with determinant equal to unity). Hence, for each ω, the matrix
Mi,j defines a unique mapping for amplitudes of the plane waves in layer n1 into
the amplitude of the next layer with index n2.

Similarly, the wave vector for negative index materials is slightly different from

the dielectric materials. The wave vector is given as kjx =
ω

c
nj cos θj, where

refractive index, nj(x) =
√
εj(x)

√
µj(x), and impedance, Zjx =

√
µj(x)√
εj(x)

/ cos θj.

Here j=1, 2 for the thicknesses d1 and d2 respectively. Then the matrix element of
Mi,j is given by

M1,1 = eik1xd1
[
cos(k2xd2) +

1

2
i

(
Z2x

Z1x

+
Z1x

Z2x

)
sin(k2xd2)

]

M1,2 = e−ik1xd1
[
cos(k2xd2) +

1

2
i

(
Z1x

Z2x

− Z2x

Z1x

)
sin(k2xd2)

]
M2,1 = M1,2,M2,2 = M1,1

where kjx =
ω

c

√
εj(x)

√
µj(x) cos θj and Zjx =

√
µj(x)√
εj(x)

/ cos θj with j = 1, 2.

For an infinite lattice extending on the whole x-axis, the solution of the Helmholtz
equation (2.19) can be written in terms of Bloch waves [11-14] as,

−→
E (x,K) = UK(x)eiK(ω)x (2.27)

where, UK(x) is a complex valued periodic function with the period of the lattices
(d = d1 + d2), UK(x) = UK(x + d). The parameter K(ω) is called the Bloch wave
number or Dispersion Relation, where for a periodic lattice with indices n1 and n2,
there is an explicit expression for K(ω) as follows;

K(ω) =
1

d
cos−1

(
1

2
Tr[Mi,j]

)
(2.28)

with Mi,j given as above.
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After simplifying (2.28), one can obtain as,

K(ω) =
1

d
cos−1

[
cos(k1xd1)× cos(k2xd2)−

1

2

(
γ +

1

γ

)
× sin(k1xd1)× sin(k2xd2)

]
(2.29)

where γ =
k1x
k2x

for TE mode, and γ =
k1x × n2

2

k2x × n2
1

for TM mode and kjx =
ω

c
nj cos θj

with j = 1, 2. For negative index materials (NIM), the dispersion relation K(ω) is
given by,

K(ω) =
1

d
cos−1

[
cos(k1xd1) cos(k2xd2)−

1

2

(
Z1x

Z2x

+
Z2x

Z1x

)
sin(k1xd1) sin(k2xd2)

]
The equation (2.29) is known as dispersion relation of the periodic lattice with
refractive indices n1 and n2 and thicknesses d1 and d2 respectively.

The behavior of Bloch wave is characterized by this Bloch wave number or
dispersion relation. Generally, the behaviour of Bloch wave can be divided into
three cases:

• 1. For real K(ω), which lies in the first Brilluion zone [0, π/d], E(x,K) is a
periodic and travelling wave function. In this case, it is said that ω is outside
the band gap.

• 2. For imaginary K(ω), defined by, K(ω) = π/d+ ip(ω), E(x,K) is a stand-
ing wave function, a product of two periodic functions with an exponential
increasing and a decreasing function, depending on the sign of ρ(ω). In this
case, ω is inside the band gap.

• 3. For K(ω) = π/d,E(x,K) is a periodic function of period 2nd with special
properties that it is a d-shift skew symmetric, E(x+ d,K) = −E(x,K).

3. Applications
This method applies for the one-dimensional photonic crystal structure with

different materials constituents. The reflection and transmission coefficients of
the electromagnetic wave at the dielectric interfaces between the layers can be
calculated by using this.

In the area of optics and photonics, one often deals with situation in which
surface charge density and the surface current density both vanish. It follows that,

in such case, the tangential components of
−→
E and

−→
H and the normal component

of
−→
D and

−→
H are continuous across the interface separating two media. These

boundary conditions are important in solving many wave propagation problems in
optics such as wave propagation in layered media and as guided wave optics.



Transfer Matrix Method for One-Dimensional Photonic Crystals 129

References

[1] J. B. Pendry, Calculating photonic band structure, J. Phys. Cond. Mat. 8,
10851108, 1996.

[2] A. Taflove, Computational electrodynamics, The Finite-Difference Time -
Domain Method, (Artech House, Boston, London, 1995).

[3] J. B. Pendry and A. MacKinnon, Calculation of photon dispersion relations,
Phys. Rev. Lett. 69, 27722775, 1992.

[4] Special issues on photonic crystals, J. Mod. Opt., 41, 1994; J. Opt. Soc.
Am. B, 10, 1993.

[5] Z. Y. Li, L.-L. Lin, and Z.-Q. Zhang, Spontaneous Emission from Photonic
Crystals: Full Vectorial Calculations, Phys. Rev. Lett. 84, 43414344, 2000.

[6] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, High Ex-
traction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals,
Phys. Rev. Lett. 78, 32943297, 1997.

[7] C. T. Chan, Q. L. Yu, and K. M. Ho, Order-N spectral method for electro-
magnetic waves, Phys. Rev. B. 51, 16635-16642, 1995.

[8] J. B. Pendry, and L. Martin-Moreno, Energy loss by charged particles in
complex media, Phys. Rev. B. 50, 50625073, 1994.

[9] F. Gadot, A. Chelnokov, A. De Lustrac, P. Crozat, and J.M. Lourtioz, D.
Cassagne and C. Jouanin, Experimental demonstration of complete photonic
band gap in graphite structure, Appl. Phys. Lett. 71, 17801782, 1997.

[10] K. Sakoda, Optical Properties of Photonic Crystal, (Springer-Verlag Berlin
Heidelberg New York, 2001).

[11] P. Yeh, Optics in Layered Media, (John Willey and Sons, New York, 1988).

[12] A. Sopaheluwakan, Thesis on Defect States and Defect modes in 1D photonic
crystals, (Univ. of Twente, Nitherland, December, 2003); A. Rung, Thesis on
Numerical studies of energy gaps in photonic crystals, (Uppsala Univ., 2005).

[13] M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1964,
2nd Edition).



130 J. of Ramanujan Society of Math. and Math. Sc.

[14] S. G. Johnson, Photonic Crystal: From Theory to Practice, (Chapter 1,
2001).

[15] K. Yasumoto, Electromagnetic theory and applications for photonic crystals,
(Tailor & Francis Press, 2005).


