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Abstract: In this paper, we discuss the existence and uniqueness of common fixed
point and some new common fixed point theorems for two pairs of weakly compat-
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many fixed point results in the present literature of fixed point theory in dislocated
metric spaces.
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1. Introduction and Preliminaries
In 2000, Hitzler, P. and Seda, A. K. [5], introduced the concept of dislocated

topology where the initiation of dislocated metric space is appeared. After the
concept of dislocated metric space many authors have established fixed point the-
orem in dislocated metric space, one can see many results in the field of dislocated
metric space [4-12]. Hitzler, P. and Seda, A. K. [5], generalized the famous Banach
contraction principle [3] in this space. Aage, C.T. and Salunke, J. N. [1] and Isufati,
A. [7], established some important fixed point theorems for single and pair of map-
pings in dislocated metric space. Jungck, G. and Rhoades B.E. [12], introduced
the concept of weak compatibility then many interesting fixed point theorems of
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compatible and weakly compatible maps under various contractive conditions have
been obtained by a number of authors. In 2012, Jha, K. and Panthi, D. [8, 9 & 11]
have established a common fixed point theorem for two pairs of weakly compatible
mappings in dislocated metric space. In 2015 Bennani, et al. [4], established some
common fixed point theorems in dislocated metric spaces. Our result generalizes
and improves the result of fixed point theorem established by Bennani, et al. [4].

Definition 1.1. [13] Let X be a nonempty set and let d : X ×X → [0,∞) be a
function satisfying the following conditions
1. d(x, y) = d(y, x)
2. d(x, y) = d(y, x) = 0 implies x = y
3. d(x, y) = d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called dislocated metric (or simply d-metric) on X.

Definition 1.2. [5] A sequence {xn} in a d-metric space (X, d) is called a Cauchy
sequence if for given ε > 0 there exists n0 ∈ N such that for all m,n ≥ n0 we have
d(xm, xn) < ε.

Definition 1.3. [5] A sequence in a d-metric space converges with respect to d
(or in d) if there exists x ∈ X such that d(xn, x)→ 0 as n→∞. In this case x is
called limit point of {xn} (in d) and we write xn → x.

Definition 1.4. [5] A d-metric space (X, d) is called complete if every Cauchy
sequence is convergent.

Definition 1.5. [12] Let A and S be two self-mappings of a d-metric space (X, d).
A and S are said to be weakly compatible if they commute at their coincident point;
that is, Ax = Sx for some x ∈ X implies ASx = SAx.

Definition 1.6. [6] Let (X, d) be a d-metric space. A map T : X → X is
called contraction mapping if there exists a number λ with 0 ≤ λ < 1 such that
d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X.
Remark 1.1. It is easy to verify that in a dislocated metric space, we have the
following technical properties:

• A subsequence of a Cauchy sequence in d-metric space is a Cauchy sequence.

• A Cauchy sequence in d-metric space which possesses a convergent subse-
quence, converges.

• Limits in a d-metric space are unique.

Theorem 1.1. [8] Let A, B, T and S be four continuous self-mappings of a
complete d-metric space (X, d) such that
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1. TX ⊂ AX and SX ⊂ BX;
2. The pairs (S,A) and (T,B) are weakly compatible and
3. d(Sx, Ty) ≤ αd(Ax, Ty)+βd(By, Sx)+γd(Ax,By) for all x, y ∈ X, where α,β,

γ ≥ 0 satisfying α + β + γ <
1

2
.

Then A, B, T and S have a unique common fixed point in X.

Theorem 1.2. [11] Let A, B, T and S be four continuous self-mappings of a
complete d-metric space (X, d) such that
1. TX ⊂ AX and SX ⊂ BX;
2. The pairs (S,A) and (T,B) are weakly compatible;
3. d(Sx, Ty) ≤ α[d(Ax, Ty) + d(By, Sx)] +β[d(By, Ty) + d(Ax, Sx)] + γd(Ax,By)

for all x, y ∈ X, where α,β, γ ≥ 0 satisfying α + β + γ <
1

4
.

Then A, B, T and S have a unique common fixed point in X.

Theorem 1.3. [4] Let A, B, T and S be four self-mappings of a complete d-metric
space (X, d) such that
1. TX ⊂ AX and SX ⊂ BX;
2. The pairs (S,A) and (T,B) are weakly compatible;
3. d(Sx, Ty) ≤ αd(Ax, Ty) + βd(By, Sx)] + γd(Ax,By) for all x, y ∈ X, where

α,β, γ ≥ 0 satisfying α + β + γ <
1

2
.

4. The range of one of the mapping A, B, T or S is a complete subspace of X
Then A, B, T and S have a unique common fixed point in X.

2. Main Results

Theorem 2.1. Let A, B, T and S : X × X be four self-mappings of a complete
d-metric space (X, d) such that
1. TX ⊂ AX and SX ⊂ BX
2. The pairs (S,A) and (T,B) are weakly compatible;
3. d(Sx, Ty) ≤ αd(Ax, Ty)+βd(By, Sx)+γd(Ax,By)+ηd(By, Ty) (2.1)

for all x, y ∈ X, where α,β, γ, η ≥ 0 satisfying α + β + γ + η <
1

2
.

4. The range of one of the mapping A, B, T or S is a complete subspace of X.
Then A, B, T and S have a unique common fixed point in X.

Proof.
Using condition (i), we define sequences {xn} and {yn} in X by the rule,

y2n = Bx2n+1 = Sx2n and y2n+1 = Ax2n+2 = Tx2n+1; n = 0, 1, 2, ...

If y2n = y2n+1 for some n, then Bx2n+1 = Tx2n+1. Therefore x2n+1 is coincidence
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point of B and T . Also, if y2n+1 = y2n+2 for some n, then Ax2n+2 = Sx2n+2.
Hence x2n+2 is coincidence point of A and S. Assume that y2n 6= y2n+1 for all n.
Then, we have from condition (2.1)
d(y2n, y2n+1) = d(Sx2n, Tx2n+1)

≤αd(Ax2n, Tx2n+1) + βd(Bx2n+1, Sx2n) + γd(Ax2n, Bx2n+1) + ηd(Bx2n+1, Tx2n+1)
(2.2)

≤αd(y2n−1, y2n+1) + βd(y2n, y2n) + γd(y2n−1, y2n) + ηd(y2n, y2n+1)

≤α[d(y2n−1, y2n) + d(y2n, y2n+1)] + β[d(y2n, y2n+1) + d(y2n+1, y2n)]

+ γd(y2n−1, y2n) + ηd(y2n, y2n+1)

≤(α + γ)d(y2n−1, y2n) + (α + 2β + η)d(y2n, y2n+1)

Therefore,

d(y2n, y2n+1) ≤
(α + γ)

(1− α− 2β − η)
d(y2n−1, y2n)

= hd(y2n−1, y2n)

Where h =
(α + γ)

(1− α− 2β − η)
< 1

d(y2n, y2n+1) ≤ hd(y2n−1, y2n)
This shows that

d(yn, yn+1) ≤ hd(yn−1, yn) ≤ h2d(yn−2, yn−1) ≤ h3d(yn−3, yn−2) ≤ ... ≤ hnd(y0, y1)

Thus for every integer q > 0, we have

d(yn, yn+q) ≤d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + ...+ d(yn+q−1, yn+q)

≤hnd(y0, y1) + hn+1d(y0, y1) + hn+2d(y0, y1) + ...+ hn+q−1d(y0, y1)

≤hn[1 + h1 + h2 + h3 + ...+ hq−1]d(y0, y1)

≤ hn

1− h
d(y0, y1)

Since, 0 < h < 1, hn → 0 as n→∞.
So we get d(yn, yn+q) → 0. This implies that {yn} is a Cauchy sequence in a
complete dislocated metric space, there exists a point z ∈ X such that {yn} → z.
Therefore, according to Remarks 1.1, the sub sequences, {Bx2n+1} → z, {Sx2n} →
z, {Ax2n+1} → z and {Tx2n+1} → z.
Since TX ⊂ AX, there exists a point u ∈ X such that z = Au.
Now consider,



Common fixed point theorems for weakly compatible mappings in dislocated... 101

d(Su, z) = d(Su, Tx2n+1)

≤αd(Au, Tx2n+1) + βd(Bx2n+1, Su) + γd(Au,Bx2n+1) + ηd(Bx2n+1, Tx2n+1)
(2.3)

=αd(z, Tx2n+1) + βd(z, Su) + γd(z,Bx2n+1) + ηd(z, z)

=αd(z, z) + βd(z, Su) + γd(z, z) + ηd(z, z)

=βd(z, Su)

Now, taking limit as n→∞, we get, d(Su, z) ≤ βd(z, Su) which is a contradiction.
So, we have Su = Au = z.
Again, since SX ⊂ BX, there exists a point v ∈ X such that z = Bv. We claim
that z = Tv. If z 6= Tv, then

d(z, Tv) = d(Su, Tv)

≤ αd(Au, Tv) + βd(Bv, Su) + γd(Au,Bv) + ηd(Bv, Tv) (2.4)

= αd(z, Tv) + βd(z, z) + γd(z, z) + ηd(z, Tv)

≤ αd(z, Tv) + β[d(z, Tv) + d(Tv, z)] + γ[d(z, Tv) + d(Tv, z)] + ηd(z, Tv)

= (α + 2β + 2γ + η)d(z, Tv)

d(z, Tv) ≤ (α + 2β + 2γ + η)d(z, Tv)

which is a contradiction.
So, we get z = Tv. Hence, we have Su = Au = Tv = Bv = z.
Since the pair (S,A) are weakly compatible so by definition SAu = ASu implies
Sz = Az. Now, we show that z is the fixed point of S. If Sz 6= z, then

d(Sz, z) = d(Sz, Tv)

≤ αd(Az, Tv) + βd(Bv, Sz) + γd(Az,Bv) + ηd(Bv, Tv) (2.5)

= αd(Sz, z) + βd(z, Sz) + γd(Sz, z) + ηd(z, z)

≤ (α + β + γ + 2η)d(Sz, z)

d(Sz, z) ≤ (α + β + γ + 2η)d(Sz, z)

which is a contradiction. So, we have Sz = z. This implies that Az = Sz = z.
Again, the pair (T,B) are weakly compatible, so by definition TBv = BTv implies
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Tz = Bz. Now, we show that z is the fixed point of T . If Tz 6= z, then

d(z, Tz) = d(Sz, Tz)

≤ αd(Az, Tz) + βd(Bz, Sz) + γd(Az,Bz) + ηd(Bz, Tz) (2.6)

= αd(z, Tz) + βd(Tz, z) + γd(z, Tz) + ηd(Tz, Tz)

≤ (α + β + γ + 2η)d(z, Tz)

d(z, Tz) ≤ (α + β + γ + 2η)d(z, Tz)

which is a contradiction. This implies that z = Tz. Hence, we have Az = Bz =
Sz = Tz = z.
This shows that z is the common fixed point of the self-mappings A, B, S and T

Uniqueness:

Let u 6= v be two common fixed points of the mappings A, B, S and T . Then we
have,

d(u, v) = d(Su, Tv)

≤ αd(Au, Tv) + βd(Bv, Su) + γd(Au,Bv) + ηd(Bv, Tv)

= αd(u, v) + βd(v, u) + γd(u, v) + ηd(v, v)

= (α + β + γ + 2η)d(u, v)

d(u, v) ≤ (α + β + γ + 2η)d(u, v)

a contradiction. This shows that d(u, v) = 0
Since (X, d) is a dislocated metric space, so we have u = v. This establishes the
theorem. From above theorem we can obtain the following corollaries.

Corollary 2.1. Let (X, d) be a complete d-metric space. Let A and S be two self
mappings satisfying,
1. SX ⊂ AX
2. The pairs (S,A) is weakly compatible;
3. d(Sx, Sy) ≤ αd(Ax, Sy) + βd(Ay, Sx) + γd(Ax,Ay) + ηd(Ay, Sy)
for all x, y ∈ X where α, β, γ, η ≥ 0 satisfying α + β + γ + η < 1

2

4. The range of one of the mapping A, or S is a complete subspace of X. Then A
and S have a unique common fixed point in X.
Proof: If we take B = A and S = T in theorem 2.1, and follow the similar proof
as that in the theorem 2.1, we can establish this corollary.

Corollary 2.2. Let (X, d) be a complete d-metric space. Let S and T : X → X
be two self mappings satisfying,
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1. d(Sx, Ty) ≤ αd(x, Ty) + βd(y, Sx) + γd(x, y) + ηd(y, Ty)
for all x, y ∈ X where α, β, γ, η ≥ 0 satisfying α + β + γ + η < 1

2

2. The range of one of the mapping S or T is a complete subspace of X. Then S
and T have a unique common fixed point.
Proof: If we take A = B = I an identity mapping in the theorem 2.1, and follow
the similar proof as given in the theorem 2.1, we can establish this corollary.

Corollary 2.3: Let (X, d) be a complete d-metric space. Let A,B : X → X be
two self mappings satisfying,
1. d(x, y) ≤ αd(Ax, y) + βd(By, x) + γd(Ax,By) + ηd(By, y)
for all x, y ∈ X where α, β, γ, η ≥ 0 satisfying α + β + γ + η < 1

2

2. The range of one of the mapping A and B is a complete subspace of X. Then
A and B have a unique common fixed point.
Proof: If we take S = T = I an identity mapping in above theorem 2.1 and apply
the similar proof as given in the theorem 2.1, we can establish this corollary 2.3.

Remark: Following is the procedure used in the proof of the theorem 2.1, we have
the following next result in which we replace the condition α + β + γ + η < 1

2
by

the condition α + β + γ + η ≤ 1
2

for α, β, γ, η > 0.

Theorem 2.2. Let A, B, T and S : X → X be four self-mappings of a complete
d-metric space (X, d) such that
1. TX ⊂ AX and SX ⊂ BX
2. The pairs (S,A) and (T,B) are weakly compatible;
3. d(Sx, Ty) ≤ αd(Ax, Ty)+βd(By, Sx)+γd(Ax,By)+ηd(By, Ty) (2.7)
for all x, y ∈ X where α, β, γ, η > 0 satisfying α + β + γ + η ≤ 1

2

4. The range of one of the mapping A,B, T or S is a complete subspace of X.
Then A, B, T and S have a unique common fixed point in X.

Corollary 2.4. Let (X, d) be a complete d-metric space. Let A and S be two self
mappings satisfying,
1. SX ⊂ AX
2. The pairs (S,A) is weakly compatible;
3. d(Sx, Sy) ≤ αd(Ax, Sy) + βd(Ay, Sx) + γd(Ax,Ay) + ηd(Ay, Sy)
for all x, y ∈ X where α, β, γ, η > 0 satisfying α + β + γ + η ≤ 1

2

4. The range of one of the mapping A or S is a complete subspace of X. Then A
and S have a unique common fixed point in X.
Proof: If we take B = A and S = T in theorem 2.2, and follow the similar proof
as given in the theorem 2.1, we can establish this corollary.

Corollary 2.5. Let (X, d) be a complete d-metric space. Let S and T : X → X
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be two self mappings satisfying,
1. d(Sx, Ty) ≤ αd(x, Ty) + βd(y, Sx) + γd(x, y) + ηd(y, Ty)
for all x, y ∈ X where α, β, γ, η > 0 satisfying α + β + γ + η ≤ 1

2

2. The range of one of the mapping S or T is a complete subspace of X. Then S
and T have a unique common fixed point.
Proof: If we take A = B = I an identity mapping in the theorem 2.2, and follow
the similar proof as that in the theorem 2.1, we can establish this corollary.

Corollary 2.6. Let (X, d) be a complete d-metric space. Let A,B : X → X be
two self mappings satisfying,
1. d(x, y) ≤ αd(Ax, y) + βd(By, x) + γd(Ax,By) + ηd(By, y)
for all x, y ∈ X where α, β, γ, η > 0 satisfying α + β + γ + η ≤ 1

2

2. The range of one of the mapping A and B is a complete subspace of X. Then
A and B have a unique common fixed point.
Proof: If we take S = T = I an identity mapping in above Theorem 2.2 and apply
the similar proof as given in the theorem 2.1, we can establish this corollary.
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