A DIRECT PROOF OF THE AAB-BAILEY LATTICE

Caihuan Zhang and Zhizheng Zhang

Department of Mathematics, Luoyang Normal University, Luoyang 471934, P. R. China
E-mail: zhcaihuan@163.com, zhzhzhang-yang@163.com

Dedicated to Prof. K. Srinivasa Rao on his $75^{\text {th }}$ Birth Anniversary

Abstract: The purpose of this paper is to give a direct proof of AAB-Bailey lattice.

Keywords and Phrases: Bailey pair, identity, AAB Bailey lattice.
2010 Mathematics Subject Classification: 33D15.

1. Introduction

First recall some standard basic hypergeometric notation [8]. For two indeterminate q and x with $|q|<1$, let

$$
(x ; q)_{\infty}==\prod_{n=1}^{\infty}\left(1-x q^{n-1}\right)
$$

which can be used to define the following shifted factorial:

$$
(x ; q)_{n}=\frac{(x ; q)_{\infty}}{\left(x q^{n} ; q\right)_{\infty}}
$$

The multiple parameter form is abbreviated as

$$
\left(x_{1}, x_{2}, \cdots, x_{k} ; q\right)_{n}=\left(x_{1} ; q\right)_{n}\left(x_{2} ; q\right) \cdots\left(x_{k} ; q\right)_{n} .
$$

The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined by

$$
{ }_{r} \phi_{s}\left[\left.\begin{array}{ccc}
\alpha_{1}, & \ldots, & \alpha_{r} \\
\beta_{1}, & \ldots, & \beta_{s}
\end{array} \right\rvert\, q, z\right]=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{r} ; q\right)_{n}}{\left(q, \beta_{1}, \cdots, \beta_{s} ; q\right)_{n}}\left\{(-1)^{n} q^{\binom{n}{2}}\right\}^{1+s-r} z^{n}
$$

One of the most important summation formula is the sum of a very-well-poised ${ }_{6} \phi_{5}$ series

$$
{ }_{6} \phi_{5}\left[\begin{array}{ccccc}
a, & q \sqrt{a}, & -q \sqrt{a}, & b, & c, \tag{1}\\
& \sqrt{a}, & -\sqrt{a}, & q a / b, & q a / c, \\
& a q^{n+1} & q, \frac{a q^{n+1}}{b c}
\end{array}\right]=\frac{(q a, q a / b c ; q)_{n}}{(q a / b, q a / c ; q)_{n}} .
$$

The Bailey transform and Bailey lemma play a very important role in the theory and applications of the basic hypergeometric series [3, 8, 12]. Many important identities can be proved by using the Bailey lemma [9, 13, 14]. The Bailey transform was first discovered by Bailey [5]. Slater [11] utilized it to obtain many RogersRamanujan type identities. Subsequently Andrews [2] established the iterative "Bailey chain" concept which led to a wide range of applications. We first give the concept of the Bailey pair in the following.
Definition 1.1 Let $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ and $\beta=\left(\beta_{0}, \beta_{1}, \ldots\right)$. a pair of sequences (α, β) is called a Bailey pair with parameters a if $\alpha_{0}=1$ and

$$
\begin{equation*}
\beta_{n}=\sum_{r=0}^{n} \frac{\alpha_{r}}{(q ; q)_{n-r}(a q ; q)_{n+r}} \tag{2}
\end{equation*}
$$

for all $n \geq 0$.
In $[2,(4.1)]$, Andrews gave the following inversion relation:

$$
\begin{equation*}
\alpha_{n}=\left(1-a q^{2 n}\right) \sum_{k=0}^{n} \frac{(a q ; q)_{n+k-1}(-1)^{n-k} q^{\binom{n-k}{2}}}{(q ; q)_{n-k}} \beta_{n} \tag{3}
\end{equation*}
$$

and the following Bailey lemma.
Lemma 1.2 (Bailey lemma [2]) If (α, β) is a Bailey pair relative to a, then so is the new pair $\left(\alpha^{\prime}, \beta^{\prime}\right)$ given by

$$
\alpha_{n}^{\prime}=\frac{(\rho, \sigma ; q)_{n}(a q / \rho \sigma)^{n}}{(a q / \rho, a q / \sigma ; q)_{n}} \alpha_{n}
$$

and

$$
\beta_{n}^{\prime}=\sum_{r=0}^{n} \frac{(\rho, \sigma ; q)_{r}(a q / \rho \sigma ; q)_{n-r}(a q / \rho \sigma)^{r}}{(q ; q)_{n-r}(a q / \rho, a q / \sigma ; q)_{n}} \beta_{r}
$$

In [1], Agarwal, Andrews and Brewwoud also shown the successive Bailey pairs are necessarily linearly arranged, but that even within the constraints of fixed ρ and σ we have several ways of defining a new Bailey pair, giving rise to what they termed
a Bailey lattice.
Theorem 1.3 (AAB Bailey lattice, [1, Lemma 1.2]) Let (α, β) be a Bailey pair relative to a, and set $\alpha_{-1}^{\prime}:=0$. If we define ($\alpha^{\prime}, \beta^{\prime}$) by

$$
\begin{equation*}
\alpha_{n}^{\prime}=(1-a)\left(\frac{a}{\rho \sigma}\right)^{n} \frac{(\sigma, \rho ; q)_{n}}{(a / \rho, a / \sigma ; q)_{n}}\left[\frac{\alpha_{n}}{1-a q^{2 n}}-\frac{a q^{2 n-2} \alpha_{n-1}}{1-a q^{2 n-2}}\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}^{\prime}=\sum_{r=0}^{n} \frac{(\sigma, \rho ; q)_{r}(a / \rho \sigma ; q)_{n-r}}{(q ; q)_{n-r}(a / \rho, a / \sigma)_{n}}\left(\frac{a}{\rho \sigma}\right)^{r} \beta_{r} \tag{5}
\end{equation*}
$$

then $\left(\alpha^{\prime}, \beta^{\prime}\right)$ is a Bailey pair relative to $a q^{-1}$.
The AAB Bailey lattice plays an important role in the theory of Bailey pair [4, $6,7,10]$. In [14], Zhang and Huang gave a WP-Bailey lattice similar to that of the AAB lattice. In [15], Zhang and Wu established a $U(n+1)$ extension of the AAB Bailey lattice. The purpose of this note is to give a direct proof of the AAB Bailey lattice.

2. A direct proof of the AAB Bailey lattice

By the definition of Bailey pair, we have

$$
\begin{align*}
& \sum_{r=0}^{n} \frac{\alpha_{r}^{\prime}}{(q ; q)_{n-r}(a q ; q)_{n+r}} \\
& \quad=\sum_{r=0}^{n} \frac{(1-a)(\sigma, \rho ; q)_{r}\left(\frac{a}{\rho \sigma}\right)^{r}}{(q ; q)_{n-r}(a ; q)_{n+r}(a / \rho, a / \sigma ; q)_{r}}\left[\frac{\alpha_{r}}{1-a q^{2 r}}-\frac{a q^{2 r-2} \alpha_{r-1}}{1-a q^{2 r-2}}\right] . \tag{6}
\end{align*}
$$

Letting

$$
\Omega=\frac{\alpha_{r}}{1-a q^{2 r}}-\frac{a q^{2 r-2} \alpha_{r-1}}{1-a q^{2 r-2}},
$$

from (3), we have

$$
\Omega=\sum_{j=0}^{r} \frac{(a q ; q)_{r+j-1}(-1)^{r-j} q^{\left(r_{2}^{-j}\right)}}{(q ; q)_{r-j}} \beta_{j}-a q^{2 r-2} \sum_{j=0}^{r-1} \frac{\left.\left.(a q ; q)_{r+j-2}(-1)^{r-j-1} q^{(r-j-1}\right)^{(r-1}\right)}{(q ; q)_{r-j-1}} \beta_{j} .
$$

After some simplifications, which yields

$$
\Omega=\sum_{j=0}^{r} \frac{\left.\left(1-a q^{2 r-1}\right)(a q ; q)_{r+j-2}(-1)^{r-j} q^{(r-j}\right)}{(q ; q)_{r-j}} \beta_{j} .
$$

Then substituting Ω into the above identity, we have the following result.

$$
\begin{aligned}
& \sum_{r=0}^{n} \frac{\alpha_{r}^{\prime}}{(q ; q)_{n-r}(a q ; q)_{n+r}} \\
= & \sum_{r=0}^{n} \frac{(1-a)(\sigma, \rho ; q)_{r}\left(\frac{a}{\rho \sigma}\right)^{r}}{(q ; q)_{n-r}(a ; q)_{n+r}(a / \rho, a / \sigma ; q)_{r}} \sum_{j=0}^{r} \frac{\left.\left(1-a q^{2 r-1}\right)(a q ; q)_{r+j-2}(-1)^{r-j} q^{\left({ }^{(r-j}{ }^{2}\right.}\right)}{(q ; q)_{r-j}} \beta_{j} \\
= & \sum_{j=0}^{n} \beta_{j} \sum_{r=j}^{n} \frac{(1-a)(\sigma, \rho ; q)_{r}\left(\frac{a}{\rho \sigma}\right)^{r}}{(q ; q)_{n-r}(a ; q)_{n+r}(a / \rho, a / \sigma ; q)_{r}} \frac{\left(1-a q^{2 r-1}\right)(a q ; q)_{r+j-2}(-1)^{r-j} q^{\left(r_{2}^{r-j}\right)}}{(q ; q)_{r-j}} \\
= & \sum_{j=0}^{n} \beta_{j} \sum_{r=0}^{n-j} \frac{(1-a)(\sigma, \rho ; q)_{r+j}\left(\frac{a}{\rho \sigma}\right)^{r+j}}{(q ; q)_{n-r-j}(a ; q)_{n+r+j}(a / \rho, a / \sigma ; q)_{r+j}} \frac{\left(1-a q^{2 r+2 j-1}\right)(a q ; q)_{r+2 j-2}(-1)^{r} q^{\binom{r}{2}}}{(q ; q)_{r}}
\end{aligned}
$$

and the second sum in the above identity should be

$$
\begin{aligned}
& \frac{(\sigma, \rho ; q)_{j}(a q ; q)_{2 j-2}\left(\frac{a}{\rho \sigma}\right)^{j}}{(q ; q)_{n-j}(a ; q)_{n+j}(a / \rho, a / \sigma ; q)_{j}} \\
\times & \sum_{r=0}^{n-j} \frac{(1-a)\left(q^{j} \sigma, q^{j} \rho ; q\right)_{r+j}\left(\frac{a}{\rho \sigma}\right)^{r}\left(1-a q^{2 r+2 j-1}\right)\left(a q^{2 j-1} ; q\right)_{r}(-1)^{r} q^{\binom{r}{2}}}{\left(q^{1+n-j} ; q\right)_{-r}\left(a q^{n+j} ; q\right)_{r}\left(q^{j} a / \rho, q^{j} a / \sigma ; q\right)_{r}(q ; q)_{r}}
\end{aligned}
$$

After some manipulations and by applying the very-well-poised ${ }_{6} \phi_{5}$ summation formula (1), we obtain

$$
\begin{aligned}
& \sum_{r=0}^{n} \frac{\alpha_{r}^{\prime}}{(q ; q)_{n-r}(a q ; q)_{n+r}} \\
= & \sum_{j=0}^{n} \beta_{j} \frac{(\sigma, \rho ; q)_{j}\left(\frac{a}{\rho \sigma}\right)^{j}(a ; q)_{2 j}}{(q ; q)_{n-j}(a ; q)_{n+j}(a / \rho, a / \sigma ; q)_{j}} \frac{\left(q^{2 j} a, a / \rho \sigma ; q\right)_{n-j}}{\left(q^{j} a / \rho, q^{j} a / \sigma\right)_{n-j}} \\
= & \sum_{j=0}^{n} \frac{(\sigma, \rho ; q)_{j}\left(\frac{a}{\rho \sigma}\right)^{j}(a / \rho \sigma ; q)_{n-j}}{(q ; q)_{n-j}(a / \rho, a / \sigma ; q)_{n}} \beta_{j} \\
= & \beta_{n}^{\prime}
\end{aligned}
$$

This completes the proof.

Acknowledgement

This research is supported by the National Natural Science Foundation of China (Grant No. 11371184).

References

[1] Agarwal, A. K., Andrews G. E. and Bressoud D., The Bailey lattice, J. Indian Math. Soc., 51 (1987) 57-73.
[2] Andrews, G. E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math., 114(1984), 267-283.
[3] Andrews, G. E., q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Series in Mathemaitcs, Vol. 66, American Mathematical Society, Providence, Rhode Island, 1986.
[4] Andrews, G. E. and Berkovich, A., A trinomial analogue of Bailey's lemma and $N=2$ superconformal invariance, Comm. Math. Phys. 192.2 (1998), 245-260.
[5] Bailey, W. N., Identities of the Rogers-Ramanujan type, Proc. London Math. Soc., 50(1949)1-10.
[6] Bressoud, D., Ismail, M. E. H. and Stanton, D., Change of base in Bailey pairs, The Ramanujan J. 4.4(2000),435-453.
[7] Jouhet, F., Shifted versions of the Bailey and well-poised Bailey lemmas, The Ramanujan J. 23.1-3(2010),315-333.
[8] Gasper, G. and Rahman, M., Basic Hypergeometric Series (2nd edition), Cambridge University Press, Cambridge, 2004.
[9] Lovejoy, J., A Bailey lattice, Proc. Amer. Math. Soc., 132(2004), 1507-1516.
[10] Lovejoy, J., Bailey pairs and indefinite quadratic forms, J. Math. Anal. Appl. 410.2(2014),1002-1013.
[11] Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (Ser. 2), 54(1952), 147-167.
[12] Slater, L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, 1966.
[13] Warnaar, S. O., Supernomial coefficients, Bailey's lemma and Rogers-Ramanujantype identities: A survey of results and open problems, Sem. Lothar. Combin., 42(1999), Article B42n, 1-22 (electronic).
[14] Zhang, Z. Z. and Huang, J. L., A WP-Bailey lattice and its applications, International J. Number Theory, 12.1(2016), 189-203.
[15] Zhang, Z. Z. and Wu, Y., A $U(n+1)$ Bailey lattice, J. Math. Anal. Appl., 426.2(2015), 747-764.

