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Abstract: In recent years, photonic quasicrystals (PQs) with aperiodic structures
have attracted many interests for their amusing photonic band gap (PBG) proper-
ties analogical to those of periodic photonic crystals. The diversity of the PBGs of
PQs is magnetic both theoretically and experimentally for potential applications
in novel optical and optoelectronic devices. Among various PQs, the properties
of one-dimensional PQs could be simulated more precisely. One-dimensional PQs,
including Fibonacci and Thue- Morse (TM) sequences have been constructed ex-
perimentally. Here, the transmission spectra of aperiodic photonic crystals are
calculated by transfer matrix method in order to discuss the PBG.
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1. Introduction
There is currently a great interest in the physics and applications of one-

dimensional spatially periodic, quasiperiodic and random photonic bandgap (PBG)
structures [1, 2]. Quasi-crystals can be considered as suitable models to describe
the transition from the perfect periodic structure [3] to the random structure [4,
5]. PQs can be generated by stacking together layers of different dielectric materi-
als according to a simple deterministic generation rule [6]. Thue-Morse structure
[7], Fibonacci sequence [8-10], Cantor layer etc. are some examples of the one
dimensional quasiperiodic structures.

Quasicrystals represent an intermediate organization stage between periodic
dielectric materials and random media and have fascinating properties like the
formation of multiple frequency band gap regions, transmission resonances and the
occurrence of critically localized states.
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In this paper, the mathematical formulation of the optical spectra of Fibonacci
and Thue-Morse aperiodic structures is discussed.

Theory

Fibonacci sequences are multilayer structures consisting of two different mate-
rials as building blocks. Two materials are labeled as H and L, where H represents
the material with high refractive index and L represents the material with low re-
fractive index. The number of layers in a structure depends on the order of the
Fibonacci sequence. Fibonacci sequence can be generated by the recursive relation,

Sj+2 = {Sj, Sj+1}, j ≥ 0 (1)

with S0 = H and S1 = L, where Sj(J > 1) is the jth generation of the Fibonacci
structure. H and L are material with refractive index nH and nL and thicknesses
dH and dL respectively.

The number of layers in a sequence is given by Fj, where Fj is a Fibonacci
number obtained from the recursive law Fj+1 = Fj + Fj−1, with F0 = F1 = 1. For
j ≥ 2, the systems Sj are known as quasiperiodic. First eight Fibonacci sequences
are given in Table 1.

Simple transfer matrix method used to study the quasiperiodic Fibonacci struc-
tures [11, 12]. The transfer matrix for Fibonacci system can be written as,

Mj = Mj−2Mj−1, j ≥ 2, (2)

with M0 = MH and M1 = ML.

Table 1: Definition of first eight Fibonacci sequences

Fibonacci
sequence

Sequence definition Number
of layers

S0 H 1
S1 L 1
S2 HL 2
S3 LHL 3
S4 HLLHL 5
S5 LHLHLLHL 8
S6 HLLHLLHLHLLHL 13
S7 LHLHLLHLHLLHLLHLHLLHL 21
S8 HLLHLLHLHLLHLLHLHLLHLHLLHLLHLHLLHL 34
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The transfer matrices for the single layer H and L are given by

MH =

 cos βH − i
qH

sin βH

−iqH sin βH cos βH

 (3)

and

ML =

 cos βL − i
qL

sin βL

−iqL sin βL cos βL

 (4)

where βH =
2π

λ
nHdH cos θH and βL =

2π

λ
nLdL cos θL are the layer phase thick-

nesses. θH and θL are the angle of refractions in layers H and L respectively which
are determined by the Snell’s law and λ is the wavelength of incident wave. Param-
eters qH and qL are given by, qH = nH cos θH and qL = nL cos θL for TE polarization

qH =
cos θH
nH

and qL =
cos θL
nL

for TM polarization. Thus the transfer matrices Mj

are M2 = MHML, M3 = MLMHML and M4 = MhMLMLMHML for S2, S3 and S4

respectively.
Let us consider an N-period finite structure whose basic cell is the Fibonacci

structure Sj. The overall transfer matrix M of the system is obtained to be

M = (Mj)
N =

 M11 M12

M21 M22

 (5)

The reflection coefficient is given by

r =
(M11 + qtM12)qi − (M21 + qtM22)

(M11 + qtM12)qi + (M21 + qtM22)
, (6)

where qi,t = ni,t cos θi,t for TE wave and qi,t =
cos θi,t
ni,t

for TM wave, where i and t

represent incident medium and substrate respectively. The reflectivity is given by,

R = |r|2. (7)

The above theoretical analysis can be applied for optical transmission mea-
surements on the symmetric Fibonacci films. It is well known that the Fibonacci
sequence, which contains two units H and L, can be produced by repeated appli-
cation of the substitution rules H → HL and L → H. Since Merlin et al. first
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reported the realization of Fibonacci superlattices in 1985; much attention has
been paid to the exotic wave phenomena of Fibonacci systems without the mir-
ror symmetry. But symmetric Fibonacci sequence opens a way for technological
applications in several fields. The symmetric Fibonacci sequence can be generated
in the following way. The j-th generation of the sequence can be expressed as,

Sj = {Gj, Tj} where Gj and Tj are Fibonacci sequences. Gj and Tj obey the
recursion relations,
Gj = Gj−1Gj−2, and Tj = Tj−2Tj−1, with G0 = T0 = L and G1 = T1 = H.
Therefore

Sj = Gj−1Gj−2Tj−2Tj−1 (8)

Considering the symmetry in the structure as shown in the above equation and
using the unitary condition det |Mj| = 1, the transmission coefficient of the light
wave through the multilayers with internal symmetry can be written as,

T (Sj) =
4

|Mj|2 + 4
=

4

[M12 +M21]2 + 4
(9)

As can be seen from the above equation, if the condition M12+M21 = 0 is satisfied,
perfect transmission peaks are indeed obtained. Thus, resonant transmissions can
be obtained in the dielectric multilayers with mirror symmetry.

Thue-Morse Structure
The Thue-Morse sequence is one of the well known examples in one-dimensional

aperiodic structure. The T-M 1-D structure is constituted by the sequence of two
layers A and B with refractive indices nA and nB, and thicknesses dA and dB
respectively. It can be produced by repeating application of the substitution rules
A → AB and B → BA. For example, the first few generations Sn of Thue-Morse
sequence are as follows,

S0 = [A]
S1 = [AB]
S2 = [ABBA]
S3 = [ABBABAAB]
S4 = [ABBABAABBAABABBA]
....

The reflectivity of optical waves through a T-M dielectric multilayer for both
transverse electric (TE) and transverse magnetic (TM) polarizations and for dif-
ferent incident angles can be calculated by using the transfer matrix method as in
the above case of Fibonacci sequence. Also, the even-order T-M multilayer has the
characteristic of mirror symmetry.
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As in the case of Fibonacci sequence, if the conditions M12 +M21 = 0, for even
order T −M and, M12 −M21 = 0, for odd order T −M

are satisfied, a perfect transmission of light will definitely occur in the Thue-
Morse dielectric multilayers.

Conclusion
The Transfer Matrix Method (TMM) is used to calculate the photonic band

structure for dispersive materials in 1-D, 2-D and 3-D photonic structures, which
are frequency dependent [13]. The TMM consists on writing the Maxwells equa-
tions in the k-space and rewriting them on a mesh. This method is capable of
handling PBG materials of finite thickness with layer by layer calculations. Struc-
tures with defects can be dealt only by considering a super-cell. The band struc-
tures, reflectivity and transmission coefficients can be found by this method easily.
Many researchers have used this method [14-15]. It has also proved very useful
and accurate when comparisons with experimental structures are undertaken. The
limitations of this method are the memory storage but also it is difficult to deal
with geometry different from the cubic geometry.
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