# ON GENERALIZED $\eta$-DUALS OF SOME SEQUENCE SPACES 

Seraj Ahemed Khan, Ashfaque A. Ansari and K.B. Gupta*<br>Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, Gorakhpur (UP), India. E-mail: khanserj86@gmail.com<br>*Department of Mathematics<br>St. Andrews College, Gorakhpur (UP), India

Abstract: P. Chandra and B.C. Tripathy [5] have generalized the notion of the Köthe-Toeplitz dual of sequence spaces on introducing the concept of $\eta$-dual of order r for $r \geq 1$ of sequence spaces.
Ansari and Gupta [3] have generalized the notion of the Köthe-Toeplitz dual of sequence spaces on introducing the concept of $\eta$-dual of order r for $0<r \leq 1$.
We have defined and determined the $\eta$-dual of some sequence spaces for $r>0$ and have established their perfectness in relation the $\eta$-dual for $r>0$.
Keywords and Phrases: Dual space, perfect space, $\eta$ dual, convergent sequence, $l_{r}$ space, bounded variation, cesaro summable sequence.
2010 Mathematics Subject Classification: 40A05, 46A20, 46A45.

## 1. Introduction

The idea of dual sequence space was introduce by Köthe and Toeplitz [10], whose main result with $\alpha$-duals. An account of the duals of sequence spaces is found in Köthe [11]. The different type of duals of sequence spaces are found in cook [2]. Maddox [4], Kamthan and Gupta and many others. In this paper $w, c, c_{0}, l_{s}, l_{p}$, $l_{\infty}, v, v_{\infty}, b_{v}, w_{p}$ denoted the space of all, convergent, null absolutely summable, pabsolutely summable, bounded convergent series, series with bounded partial sum, bounded variation sequence, p-Cesaro summable sequence spaces respectively.

The $\alpha$-dual of a subset E of $w$ is defined as

$$
E^{\alpha}=\left\{\left\langle a_{n}\right\rangle \in w:\left(a_{n} x_{n}\right) \in l_{1} \forall\left(x_{n}\right) \in E\right\}
$$

If we replace $l_{1}$ by $v$ and $v_{\infty}$ in the above definition then we shall get $\beta$ and $\gamma$-duals of E respectively.

Basarir [7], Lascarides [9], Maddox [4] and other have studied results involving $\alpha$-dual and $\beta$-dual of different sequence spaces and their properties.
let E be a non-empty subset of $w$ and $r \geq 1$ then the $\eta$-dual of E is defined by P . Chandra and B.C. Tripathy [5] as,

$$
E^{\eta}=\left\{\left\langle a_{n}\right\rangle \in w:\left(a_{n} x_{n}\right) \in l_{r} \forall\left(x_{n}\right) \in E\right\}
$$

A non-empty subset E of $w$ is said to be perfect or $\eta$-reflexive. If $E^{\eta \eta}=E$. Taking $r=1$ in the above definition we get the $\alpha$-dual of E .

Let E be a non-empty subset of w and $0 \leq r \leq 1$ then $\eta$-dual of E is defined by Ansari and Gupta [3] as

$$
E^{\eta}=\left\{\left(a_{n}\right) \in w:\left(a_{n} x_{n}\right) \in l_{r} \forall\left(x_{n}\right) \in E\right\}
$$

A non-empty subset E of w is said to be perfect or $\eta$-reflexive if $E^{\eta \eta}=E$. Taking $r=1$ in the above definition we get the $\alpha$-dual of E .

Let E be a non-empty subset of w and $r>0$ then $\eta$-dual of E , we defined as

$$
E^{\eta}=\left\{\left(a_{n}\right) \in w:\left(a_{n} x_{n}\right) \in l_{r} \forall\left(x_{n}\right) \in E\right\}
$$

A non-empty subset E of w is said to be perfect or $\eta$-reflexive if $E^{\eta \eta}=E$. Taking $r=1$ in the above definition we get the $\alpha$-dual of $\mathrm{E} . .2 \mathrm{~cm}$

## 2. Main Results

In this section we fined the $\eta$-dual of some sequences spaces and establish whether they are perfect or not relative to $\eta$-dual.

## Lemma

(i) $E^{\eta}$ is a linear subspace of w for every $E \subset W$.
(ii) $E \subset F$ implies $E^{\eta} \supset F^{\eta} \forall E, F \subset W$.
(iii) $E^{\eta \eta}=\left(E^{\eta}\right)^{\eta} \supset E \subset W$.
(iv) $\left(U_{j} E_{j}\right)^{\eta}=\bigcup_{j} E_{j}^{\eta}$ for every family $\left\{E_{j}\right\}$ with $E_{j} \subset W$ for all $j \in N$, where N is the set of Natural Number.

Theorem 2.1: $l_{r}^{\eta}=l_{\infty}, l_{\infty}^{\eta}=l_{r}$ and the space $l_{r}$ and $l_{\infty}$ are perfect spaces, where $r>0$.

Proof. First we shall show that $l_{r}^{\eta}=l_{\infty}$, where $l_{r}^{\eta}$ defined as,

$$
l_{r}^{\eta}=\left\{\left(a_{n}\right) \in w: \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}<\infty \text { for every }\left(x_{n}\right) \in l_{r}\right\}
$$

Let $\left(a_{n}\right) \in l_{\infty}$ and $\left(x_{n}\right) \in l_{r}$

$$
\Rightarrow \sup _{n \geq 1}\left|a_{n}\right|<\infty \text { and } \sum_{n=1}^{\infty}\left|x_{n}\right|^{r}<\infty
$$

therefore

$$
\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{r}\left|x_{n}\right|^{r} \leq\left(\sup _{n \geq 1}\left|a_{n}\right|^{r}\right)\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{r}\right)<\infty
$$

$\Rightarrow \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}$ converges $\forall\left(x_{n}\right) \in l_{r}$. Hence we have $a_{n} \in l_{r}^{\eta}$ i.e. $l_{\infty} \subseteq l_{r}^{\eta}$ for the converse.

Let $\left(a_{n}\right) \notin l_{\infty}$ there exist ( $a_{n}$ ) will have a subsequence $\left(a_{n_{i}}\right)$ such that $a_{n_{i}}>i^{s}$ for some fixed real number $s>\frac{1}{r}$ where is a positive integer

Define a sequence $\left(a_{n}\right)$

$$
x_{n}= \begin{cases}\frac{1}{i^{s}} & \text { if } n=n_{i} \\ 0 & \text { if } n \neq n_{i}\end{cases}
$$

then

$$
\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{r}\right)=\left(\sum_{i=1}^{\infty}\left(i^{-s}\right)^{r}\right)=\sum_{n=1}^{\infty} \frac{1}{i^{s r}}<\infty
$$

Since $s r>1 \Rightarrow\left(x_{n}\right) \in l_{r}$

$$
\begin{gathered}
\therefore \quad \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r} \geq \sum_{n=1}^{\infty}\left|\frac{1}{i^{s}} \cdot i^{s}\right|^{r}=\infty \\
\Rightarrow\left(a_{n} x_{n}\right) \in l_{r}
\end{gathered}
$$

then $\left(a_{n}\right) \notin l_{r}^{\eta}$
$\Rightarrow l_{r}^{\eta} \subset l_{\infty}$
Hence $l_{r}^{\eta}=l_{\infty}$ similarly we can prove that $l_{r}^{\eta}=l_{r}$

Since $l_{\infty}^{\eta \eta}=\left(l_{\infty}^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty}$ and $l_{r}^{\eta \eta}=\left(l_{r}^{\eta}\right)^{\eta}=l_{\infty}^{\eta}=l_{r}$
Hence the spaces $l_{\infty}$ and $l_{r}$ are perfect.
Definition 1: Let $\sigma$ denote the space of all eventually alternating sequence i.e. if $\left(x_{n}\right) \in \sigma$ then there exist $n_{0} \in N$ such that $x_{n}=-x_{n+1} \forall n>n_{0}$ it is well known that

$$
b \nu_{0}=b \nu \cap C_{0}
$$

Theorem 2.2: $\sigma^{\eta}=l_{r}$ and $\sigma$ is not perfect.
Proof. Since $\sigma \subset l_{\infty}$, then by lemma (ii) $l_{\infty}^{\eta} \subset \sigma^{\eta}$, we have

$$
\begin{equation*}
l_{r} \subset \sigma^{\eta} \quad \text { by therorem } 2.1 \tag{1}
\end{equation*}
$$

let $\left(a_{n}\right) \in \sigma^{\eta}$ then $\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}<\infty$, for every $\left(x_{n}\right) \in \sigma$.
Let us define a sequence $\left(x_{n}\right) \in \sigma$ such that, $x_{2 n-1}=1=-x_{2 n} \forall n \in N$. Then, $\sum_{n=1}^{\infty}\left|x_{n} a_{n}\right|^{r}=\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty \Rightarrow\left(a_{n}\right) \in l_{r}$. Therefore,

$$
\begin{equation*}
\sigma^{\eta} \subseteq l_{r} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\sigma^{\eta}=l_{r}
$$

Since $\sigma^{\eta \eta}=\left(\sigma^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq \sigma$. Hence $\sigma$ is not perfect.
Theorem 2.3: $C_{0}^{\eta}=C^{\eta}=l_{r}$ and the sequence spaces $C_{0}$ and $C$ are not perfect.
Proof. Since $C_{0} \subset l_{\infty}$, by lemma (ii) $l_{\infty}^{\eta} \subset C_{0}^{\eta}$ and by theorem 2.1. $l_{r}=l_{\infty}^{\eta}$

$$
\begin{equation*}
\Rightarrow l_{r} \subseteq C_{0}^{\eta} \tag{3}
\end{equation*}
$$

Again, let $\left(a_{n}\right) \in C_{0}^{\eta}$

$$
\begin{gathered}
\Rightarrow \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}<\infty \text { for every }\left(x_{n}\right) \in C_{0} \\
\Rightarrow \sum_{n=1}^{\infty}\left|a_{n}^{r} z_{n}\right|<\infty, \text { for every }\left(z_{n}\right)=\left(x_{n}^{r}\right) \in C_{0} \\
\Rightarrow\left(a_{n}^{r}\right) \in C_{0}^{r}=l_{1} \\
\Rightarrow\left(a_{n}\right) \in l_{r}
\end{gathered}
$$

Thus

$$
\begin{equation*}
C_{0}^{\eta} \subseteq l_{r} \tag{4}
\end{equation*}
$$

From (3) and (4)

$$
\begin{equation*}
C_{0}^{\eta}=l_{r} \tag{5}
\end{equation*}
$$

Since, $C_{0} \subset C \subset l_{\infty}$ by lemma (ii), $l_{\infty}^{\eta} \subset C^{\eta} \subset C_{0}^{\eta}$ from theorem 2.1 and result (5)

$$
\begin{gathered}
l_{r}=l_{\infty}^{\eta}=C^{\eta}=C_{0}^{\eta}=l_{r} \\
\Rightarrow C_{0}^{\eta}=C^{\eta}=l_{r} \\
C_{0}^{\eta \eta}=\left(C_{0}^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq C_{0}
\end{gathered}
$$

and

$$
C^{\eta \eta}=\left(C^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq C
$$

Hence, the sequence spaces $C_{0}$ and $C$ are not perfect with respect to $\eta$-dual for $r>0$.

Theorem 2.4: $\left(C_{0} \cap l_{\infty}\right)^{\eta}=\left(C \cap l_{\infty}\right)^{\eta}=l_{r}$ and the spaces $C_{0} \cap l_{\infty}$ and $C \cap l_{\infty}$ are not perfect.
Proof. Since $C_{0} \subset l_{\infty}$, therefore $C_{0} \cap l_{\infty}=C_{0}$

$$
\begin{equation*}
\Rightarrow\left(C_{0} \cap l_{\infty}\right)^{\eta}=C_{0}^{\eta}=l_{r} \quad \text { by Theorem } 2.3 \tag{6}
\end{equation*}
$$

Also, $C \subset l_{\infty}$, therefore $C \cap l_{\infty}=C$

$$
\begin{equation*}
\Rightarrow\left(C \cap l_{\infty}\right)^{\eta}=C^{\eta}=l_{r} \text { by theorem } 2.3 \tag{7}
\end{equation*}
$$

From (6) and (7)

$$
\left(C_{0} \cap l_{\infty}\right)^{\eta}=\left(C \cap l_{\infty}\right)^{\eta}=l_{r}
$$

therefore

$$
\left(C_{0} \cap l_{\infty}\right)^{\eta \eta}=\left(\left(C_{0} \cap l_{\infty}\right)^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq C_{0} \cap l_{\infty}
$$

and

$$
\left(C \cap l_{\infty}\right)^{\eta \eta}=\left(\left(C \cap l_{\infty}\right)^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq C \cap l_{\infty}
$$

Hence, the spaces $C_{0} \cap l_{\infty}$ and $C \cap l_{\infty}$ are not perfect.
Theorem 2.5: $(b \nu)^{\eta}=l_{r}=\left(b \nu_{0}\right)^{\eta}$ and the spaces $b_{\nu}$ and $b \nu_{0}$ are not perfect. Proof. Since,

$$
b \nu=\left\{x \in w: \lim _{m \rightarrow \infty} \sum_{i=1}^{m}\left|x_{i+1}-x_{i}\right| \text { exist }\right\}
$$

and

$$
b \nu_{0}=\left\{x \in b \nu: \lim _{m \rightarrow \infty} x_{m}=0\right\}=b \nu \cap C_{0}
$$

therefore $b \nu \subset l_{\infty}$, by lemma (ii) $l_{\infty}^{\eta} \subset(b \nu)^{\eta}$

$$
\begin{equation*}
\Rightarrow l_{r} \subset(b \nu)^{\eta} \quad \text { by theorem } 2.1 \tag{8}
\end{equation*}
$$

Again, let $\left(a_{n}\right) \in(b \nu)^{\eta}$

$$
\Rightarrow \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}<\infty \forall\left(x_{n}\right) \in(b \nu)
$$

Consider the sequence $\left(x_{n}\right)$ defined by, $x_{n}=1, \quad \forall n \in N$.
Then $\left(x_{n}\right) \in b \nu$ and $\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{r}$ converges. $\left(a_{n}\right) \in l_{r}$ hence,

$$
\begin{equation*}
(b \nu)^{\eta} \subset l_{r} \tag{9}
\end{equation*}
$$

From (8) and (9)

$$
(b \nu)^{\eta}=l_{r}
$$

Now we shall show that $\left(b \nu_{0}\right)^{\eta}=l_{r}$, therefore $b \nu_{0} \subset b \nu \subset l_{\infty}$, by lemma (ii)

$$
\begin{gathered}
l_{\infty}^{\eta} \subset(b \nu)^{\eta} \subset\left(b \nu_{0}\right)^{\eta} \\
\Rightarrow l_{r} \subset\left(b \nu_{0}\right)^{\eta} \quad \text { from theorem } 2.1
\end{gathered}
$$

Again, let $\left(a_{n}\right) \in\left(b \nu_{0}\right)^{\eta}$ but $\left(a_{n}\right) \notin l_{r}$

$$
\Rightarrow \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}<\infty \forall\left(x_{n}\right) \in b \nu_{0} \quad \text { and } \quad \sum_{n=1}^{\infty}\left|a_{n}\right|^{r}=\infty
$$

$\Rightarrow$ We can fined a sequence $\left(k_{n}\right)$ of natural number (with $k_{1}=1$ ) such that

$$
\sum_{i=k_{n}}^{k_{n+1}-1}\left|a_{i}\right|^{r}<n^{r} \text { for all } n=1,2,3, \ldots
$$

Now define the sequence $\left(x_{n}\right)$ as $x_{i}=n^{-1}$ if $k_{n} \leq i \leq k_{n+1}-1$ for all $n=1,2,3, \ldots$ Then,

$$
\sum_{n=1}^{\infty}\left|\Delta x_{n}\right|=\sum_{n=1}^{\infty} \sum_{i=k_{n}}^{k_{n+1}-1}\left|\Delta x_{i}\right|, \quad \text { where } \quad \Delta x_{n}=x_{n+1}-x_{n}
$$

$$
\begin{gathered}
=\sum_{n=1}^{\infty}\left|x_{k_{n+1}}-x_{n_{k}}\right| \\
=\sum_{n=1}^{\infty}\left|\frac{1}{n+1}-\frac{1}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}<\infty
\end{gathered}
$$

Hence, $\left(x_{n}\right) \in b \nu_{0}$ further

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r} & =\sum_{n=1}^{\infty} \sum_{i=k_{n}}^{k_{n+1}-1}\left|a_{i} x_{i}\right|^{r}=\sum_{n=1}^{\infty} \sum_{i=k_{n}}^{k_{n+1}-1}\left|a_{i}\right|^{r} \cdot\left|x_{i}\right|^{r} \\
& \sum_{n=1}^{\infty} \sum_{i=k_{n}}^{k_{n+1}-1}\left|a_{i}\right|^{r}>\sum_{n=1}^{\infty} \frac{1}{n^{r}} n^{r}=\infty
\end{aligned}
$$

which is a contradiction.
Thus, $\left(b \nu_{0}\right) \subseteq l_{r}$, hence, $\left(b \nu_{0}\right)^{\eta}=l_{r}$.
Thus, we get

$$
(b \nu)^{\eta}=l_{r}=\left(b \nu_{0}\right)^{\eta}
$$

therefore

$$
(b \nu)^{\eta \eta}=\left((b \nu)^{\eta}\right)^{\eta}=l_{\infty} \neq b \nu
$$

and

$$
\left(b \nu_{0}\right)^{\eta \eta}=\left(\left(b \nu_{0}\right)^{\eta}\right)^{\eta}=l_{r}^{\eta} \neq b \nu_{0}
$$

Hence, the sequence spaces $b \nu$ and $b \nu_{0}$ are not perfect.
Definition: Let $w_{p}$ be denoted p-cesaro summable sequence space and defined as,

$$
w_{p}=\left\{\left(x_{n}\right) \in w: \lim _{m \rightarrow \infty} \sum_{n=1}^{m} \frac{1}{m}\left|x_{n}-l\right|^{p}=0 \text { for some l and } 0<p<\infty\right\}
$$

Theorem 2.6: $\left(w_{p} \cap l_{\infty}\right)^{\eta}=l_{r}$ and the space $w_{p} \cap l_{\infty}$ is not perfect.
Proof. Since $w_{p} \cap l_{\infty} \subset l_{\infty}$, by lemma (ii), $l_{\infty}^{\eta} \subset\left(w_{p} \cap l_{\infty}\right)^{\eta}$

$$
\begin{equation*}
l_{r} \subset\left(w_{p} \cap l_{\infty}\right)^{\eta} \quad\left(\text { therefore } l_{\infty}=l_{r} \quad \text { from theroem } 2.1\right) \tag{10}
\end{equation*}
$$

let $\left(a_{n}\right) \notin l_{r}$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|^{r}=\infty$
Consider the sequence $\left(x_{n}\right)$ defined as, $\left(x_{n}\right)=1$ for all $n \in N$,
Then $\left(x_{n}\right) \in w_{p} \cap l_{\infty}$ but

$$
\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{r}\left|x_{n}\right|^{r}
$$

$$
\sum_{n=1}^{\infty}\left|a_{n} x_{n}\right|^{r}=\infty
$$

Hence $\left(a_{n}\right) \notin\left(w_{p} \cap l_{\infty}\right)^{\eta}$, therefore

$$
\begin{equation*}
\left(w_{p} \cap l_{\infty}\right)^{\eta} \subseteq l_{r} \tag{11}
\end{equation*}
$$

From (10) and (11)

$$
\left(w_{p} \cap l_{\infty}\right)^{\eta}=l_{r}
$$

therefore

$$
\left(w_{p} \cap l_{\infty}\right)^{\eta \eta}=\left(\left(w_{p} \cap l_{\infty}\right)^{\eta}\right)^{\eta}=l_{r}^{\eta}=l_{\infty} \neq w_{p} \cap l_{\infty}
$$

Hence, the space $w_{p} \cap l_{\infty}$ is not perfect.

## References

[1] P.K. Kamthan and m. Gupta, Sequence spaces, Lectures Notes in Pure and Applied Math. Marcel Dokker 1981.
[2] R.G. Cook, Infinite Matrices and Sequences Spaces, Dover Publi. 1955.
[3] A.A. Ansari and K.B. Gupta, $\eta$-dual of some sequence spaces, FRA-JMS (2011), 179-188.
[4] I.J. Maddox, Infinite Matrices of Operators, Lectures Notes in Mathematics No. 786, Springer Verlag 1980.
[5] P. Chandra and B.C. Tripathy, On Generalized Kotte-Toplitz duals of some sequence spaces, Indian J. Pure Appl. Math. 33(8), 1301-1306, (2002).
[6] Z.U. Ahmed and Mursaleem, J. Indian Math. Soc., 53 (1998), 177-180.
[7] M. Basarir, Indian J. Pure Appl. Math. 26(10), (1955), 1003-1010.
[8] I.J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Comb. Phil. Soc. 65, 431-435, (1969).
[9] C.G. Leascarides, Pac. J. Math. 38(2) (1971), 487-500.
[10] G. Köthe and O. Toeplitz, J.F. resine u. angrew math. 171 (1934), 193-206.
[11] G. Köthe, Topological vector spaces I(English), Springer-Verlag, 1969.
[12] I.J. Maddox, Elements of functional analysis, Cambridge University Press, 1970.
[13] Seraj Ahmed Khan, Ashfaque A. Ansari and Nafis Ahmad, On generalized $\eta$-duals of some double sequence spaces, J. of Ramanujan Society of Math. and Math. Sc. Vol.5, No.1, pp. 155-162, 2016.
[14] A.A. Ansari, Seraj Ahmed Khan, and Nafis Ahmad, Matrix transformations in some sequence spaces, South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 12, No. 1, pp. 103-112, 2016.

