ON GENERALIZED η -DUALS OF SOME SEQUENCE SPACES

Seraj Ahemed Khan, Ashfaque A. Ansari and K.B. Gupta*

Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, Gorakhpur (UP), India. E-mail: khanserj86@gmail.com

*Department of Mathematics St. Andrews College, Gorakhpur (UP), India

Abstract: P. Chandra and B.C. Tripathy [5] have generalized the notion of the Köthe-Toeplitz dual of sequence spaces on introducing the concept of η -dual of order r for $r \geq 1$ of sequence spaces.

Ansari and Gupta [3] have generalized the notion of the Köthe-Toeplitz dual of sequence spaces on introducing the concept of η -dual of order r for $0 < r \leq 1$. We have defined and determined the η -dual of some sequence spaces for r > 0 and have established their perfectness in relation the η -dual for r > 0.

Keywords and Phrases: Dual space, perfect space, η dual, convergent sequence, l_r space, bounded variation, cesaro summable sequence.

2010 Mathematics Subject Classification: 40A05, 46A20, 46A45.

1. Introduction

The idea of dual sequence space was introduce by Köthe and Toeplitz [10], whose main result with α -duals. An account of the duals of sequence spaces is found in Köthe [11]. The different type of duals of sequence spaces are found in cook [2]. Maddox [4], Kamthan and Gupta and many others. In this paper $w, c, c_0, l_s, l_p,$ $l_{\infty}, v, v_{\infty}, b_v, w_p$ denoted the space of all, convergent, null absolutely summable, pabsolutely summable, bounded convergent series, series with bounded partial sum, bounded variation sequence, p-Cesaro summable sequence spaces respectively.

The α -dual of a subset E of w is defined as

$$E^{\alpha} = \{ \langle a_n \rangle \in w : (a_n x_n) \in l_1 \forall (x_n) \in E \}$$

If we replace l_1 by v and v_{∞} in the above definition then we shall get β and γ -duals of E respectively.

Basarir [7], Lascarides [9], Maddox [4] and other have studied results involving α -dual and β -dual of different sequence spaces and their properties.

let E be a non-empty subset of w and $r \ge 1$ then the η -dual of E is defined by P. Chandra and B.C. Tripathy [5] as,

$$E^{\eta} = \{ \langle a_n \rangle \in w : (a_n x_n) \in l_r \forall (x_n) \in E \}$$

A non-empty subset E of w is said to be perfect or η -reflexive. If $E^{\eta\eta} = E$. Taking r = 1 in the above definition we get the α -dual of E.

Let E be a non-empty subset of w and $0 \le r \le 1$ then η -dual of E is defined by Ansari and Gupta [3] as

$$E^{\eta} = \{(a_n) \in w : (a_n x_n) \in l_r \forall (x_n) \in E\}$$

A non-empty subset E of w is said to be perfect or η -reflexive if $E^{\eta\eta} = E$. Taking r = 1 in the above definition we get the α -dual of E.

Let E be a non-empty subset of w and r > 0 then η -dual of E, we defined as

$$E^{\eta} = \{(a_n) \in w : (a_n x_n) \in l_r \forall (x_n) \in E\}$$

A non-empty subset E of w is said to be perfect or η -reflexive if $E^{\eta\eta} = E$. Taking r = 1 in the above definition we get the α -dual of E. .2cm

2. Main Results

In this section we fined the η -dual of some sequences spaces and establish whether they are perfect or not relative to η -dual.

Lemma

- (i) E^{η} is a linear subspace of w for every $E \subset W$.
- (ii) $E \subset F$ implies $E^{\eta} \supset F^{\eta} \forall E, F \subset W$.
- (iii) $E^{\eta\eta} = (E^{\eta})^{\eta} \supset E \subset W.$
- (iv) $(U_j E_j)^{\eta} = \bigcup_j E_j^{\eta}$ for every family $\{E_j\}$ with $E_j \subset W$ for all $j \in N$, where N is the set of Natural Number.

Theorem 2.1: $l_r^{\eta} = l_{\infty}$, $l_{\infty}^{\eta} = l_r$ and the space l_r and l_{∞} are perfect spaces, where r > 0.

Proof. First we shall show that $l_r^{\eta} = l_{\infty}$, where l_r^{η} defined as,

$$l_r^{\eta} = \left\{ (a_n) \in w : \sum_{n=1}^{\infty} |a_n x_n|^r < \infty \text{ for every } (x_n) \in l_r \right\}$$

Let $(a_n) \in l_{\infty}$ and $(x_n) \in l_r$

$$\Rightarrow \sup_{n \ge 1} |a_n| < \infty$$
 and $\sum_{n=1}^{\infty} |x_n|^r < \infty$

therefore

$$\sum_{n=1}^{\infty} |a_n x_n|^r = \sum_{n=1}^{\infty} |a_n|^r |x_n|^r \le \left(\sup_{n \ge 1} |a_n|^r \right) \left(\sum_{n=1}^{\infty} |x_n|^r \right) < \infty$$

 $\Rightarrow \sum_{\substack{n=1\\\text{converse.}}}^{\infty} |a_n x_n|^r \text{ converges } \forall (x_n) \in l_r. \text{ Hence we have } a_n \in l_r^{\eta} \text{ i.e. } l_{\infty} \subseteq l_r^{\eta} \text{ for the converse.}$

Let $(a_n) \notin l_{\infty}$ there exist (a_n) will have a subsequence (a_{n_i}) such that $a_{n_i} > i^s$ for some fixed real number $s > \frac{1}{r}$ where is a positive integer

Define a sequence (a_n)

$$x_n = \begin{cases} \frac{1}{i^s} & \text{if } n = n_i \\ \\ 0 & \text{if } n \neq n_i \end{cases}$$

then

$$\left(\sum_{n=1}^{\infty} |x_n|^r\right) = \left(\sum_{i=1}^{\infty} (i^{-s})^r\right) = \sum_{n=1}^{\infty} \frac{1}{i^{sr}} < \infty$$

Since $sr > 1 \Rightarrow (x_n) \in l_r$

$$\therefore \quad \sum_{n=1}^{\infty} |a_n x_n|^r \ge \sum_{n=1}^{\infty} |\frac{1}{i^s} \cdot i^s|^r = \infty$$
$$\Rightarrow (a_n x_n) \in l_r$$

then $(a_n) \notin l_r^{\eta}$ $\Rightarrow l_r^{\eta} \subset l_{\infty}$ Hence $l_r^{\eta} = l_{\infty}$ similarly we can prove that $l_r^{\eta} = l_r$ Since $l_{\infty}^{\eta\eta} = (l_{\infty}^{\eta})^{\eta} = l_{r}^{\eta} = l_{\infty}$ and $l_{r}^{\eta\eta} = (l_{r}^{\eta})^{\eta} = l_{\infty}^{\eta} = l_{r}$ Hence the spaces l_{∞} and l_{r} are perfect.

Definition 1: Let σ denote the space of all eventually alternating sequence i.e. if $(x_n) \in \sigma$ then there exist $n_0 \in N$ such that $x_n = -x_{n+1} \forall n > n_0$ it is well known that

$$b\nu_0 = b\nu \cap C_0$$

Theorem 2.2: $\sigma^{\eta} = l_r$ and σ is not perfect. **Proof.** Since $\sigma \subset l_{\infty}$, then by lemma (ii) $l_{\infty}^{\eta} \subset \sigma^{\eta}$, we have

$$l_r \subset \sigma^\eta$$
 by theorem 2.1 (1)

let $(a_n) \in \sigma^{\eta}$ then $\sum_{n=1}^{\infty} |a_n x_n|^r < \infty$, for every $(x_n) \in \sigma$. Let us define a sequence $(x_n) \in \sigma$ such that, $x_{2n-1} = 1 = -x_{2n} \forall n \in N$. Then, $\sum_{n=1}^{\infty} |x_n a_n|^r = \sum_{n=1}^{\infty} |a_n| < \infty \Rightarrow (a_n) \in l_r$. Therefore,

$$\sigma^{\eta} \subseteq l_r \tag{2}$$

From (1) and (2), we have

 $\sigma^{\eta} = l_r$

Since $\sigma^{\eta\eta} = (\sigma^{\eta})^{\eta} = l_r^{\eta} = l_{\infty} \neq \sigma$. Hence σ is not perfect.

Theorem 2.3: $C_0^{\eta} = C^{\eta} = l_r$ and the sequence spaces C_0 and C are not perfect. **Proof.** Since $C_0 \subset l_{\infty}$, by lemma (ii) $l_{\infty}^{\eta} \subset C_0^{\eta}$ and by theorem 2.1. $l_r = l_{\infty}^{\eta}$

$$\Rightarrow l_r \subseteq C_0^\eta \tag{3}$$

Again, let $(a_n) \in C_0^{\eta}$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n x_n|^r < \infty \text{ for every } (x_n) \in C_0$$
$$\Rightarrow \sum_{n=1}^{\infty} |a_n^r z_n| < \infty, \text{ for every } (z_n) = (x_n^r) \in C_0$$
$$\Rightarrow (a_n^r) \in C_0^r = l_1$$
$$\Rightarrow (a_n) \in l_r$$

Thus

$$C_0^\eta \subseteq l_r \tag{4}$$

From (3) and (4)

$$C_0^\eta = l_r \tag{5}$$

Since, $C_0 \subset C \subset l_\infty$ by lemma (ii), $l_\infty^\eta \subset C^\eta \subset C_0^\eta$ from theorem 2.1 and result (5)

$$l_r = l_{\infty}^{\eta} = C^{\eta} = C_0^{\eta} = l_r$$
$$\Rightarrow C_0^{\eta} = C^{\eta} = l_r$$
$$C_0^{\eta\eta} = (C_0^{\eta})^{\eta} = l_r^{\eta} = l_{\infty} \neq C_0$$

and

$$C^{\eta\eta} = (C^{\eta})^{\eta} = l_r^{\eta} = l_{\infty} \neq C$$

Hence, the sequence spaces C_0 and C are not perfect with respect to η -dual for r > 0.

Theorem 2.4: $(C_0 \cap l_\infty)^{\eta} = (C \cap l_\infty)^{\eta} = l_r$ and the spaces $C_0 \cap l_\infty$ and $C \cap l_\infty$ are not perfect.

Proof. Since $C_0 \subset l_\infty$, therefore $C_0 \cap l_\infty = C_0$

$$\Rightarrow (C_0 \cap l_\infty)^\eta = C_0^\eta = l_r \quad \text{by Theorem 2.3} \tag{6}$$

Also, $C \subset l_{\infty}$, therefore $C \cap l_{\infty} = C$

$$\Rightarrow (C \cap l_{\infty})^{\eta} = C^{\eta} = l_r \text{ by theorem 2.3}$$
(7)

From (6) and (7)

$$(C_0 \cap l_\infty)^\eta = (C \cap l_\infty)^\eta = l_\eta$$

therefore

$$(C_0 \cap l_\infty)^{\eta\eta} = ((C_0 \cap l_\infty)^\eta)^\eta = l_r^\eta = l_\infty \neq C_0 \cap l_\infty$$

and

$$(C \cap l_{\infty})^{\eta\eta} = ((C \cap l_{\infty})^{\eta})^{\eta} = l_r^{\eta} = l_{\infty} \neq C \cap l_{\infty}$$

Hence, the spaces $C_0 \cap l_\infty$ and $C \cap l_\infty$ are not perfect.

Theorem 2.5: $(b\nu)^{\eta} = l_r = (b\nu_0)^{\eta}$ and the spaces b_{ν} and $b\nu_0$ are not perfect. **Proof.** Since,

$$b\nu = \left\{ x \in w : \lim_{m \to \infty} \sum_{i=1}^{m} |x_{i+1} - x_i| \text{ exist} \right\}$$

and

$$b\nu_0 = \left\{ x \in b\nu : \lim_{m \to \infty} x_m = 0 \right\} = b\nu \cap C_0$$

therefore $b\nu \subset l_{\infty}$, by lemma (ii) $l_{\infty}^{\eta} \subset (b\nu)^{\eta}$

$$\Rightarrow l_r \subset (b\nu)^\eta \quad \text{by theorem 2.1} \tag{8}$$

Again, let $(a_n) \in (b\nu)^{\eta}$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n x_n|^r < \infty \forall (x_n) \in (b\nu)$$

Consider the sequence (x_n) defined by, $x_n = 1$, $\forall n \in N$. Then $(x_n) \in b\nu$ and $\sum_{n=1}^{\infty} |a_n x_n|^r = \sum_{n=1}^{\infty} |a_n|^r$ converges. $(a_n) \in l_r$ hence, $(b\nu)^\eta \subset l_r$ (9)

From (8) and (9)

 $(b\nu)^{\eta} = l_r$

Now we shall show that $(b\nu_0)^{\eta} = l_r$, therefore $b\nu_0 \subset b\nu \subset l_{\infty}$, by lemma (ii)

$$l_{\infty}^{\eta} \subset (b\nu)^{\eta} \subset (b\nu_0)^{\eta}$$
$$\Rightarrow l_r \subset (b\nu_0)^{\eta} \quad \text{from theorem 2.1}$$

Again, let $(a_n) \in (b\nu_0)^{\eta}$ but $(a_n) \notin l_r$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n x_n|^r < \infty \forall (x_n) \in b\nu_0 \quad \text{and} \quad \sum_{n=1}^{\infty} |a_n|^r = \infty$$

 \Rightarrow We can fined a sequence (k_n) of natural number (with $k_1 = 1$) such that

$$\sum_{i=k_n}^{k_{n+1}-1} |a_i|^r < n^r \text{ for all } n = 1, 2, 3, \dots$$

Now define the sequence (x_n) as $x_i = n^{-1}$ if $k_n \leq i \leq k_{n+1} - 1$ for all n = 1, 2, 3, ...Then,

$$\sum_{n=1}^{\infty} |\Delta x_n| = \sum_{n=1}^{\infty} \sum_{i=k_n}^{k_{n+1}-1} |\Delta x_i|, \text{ where } \Delta x_n = x_{n+1} - x_n$$

144

$$= \sum_{n=1}^{\infty} |x_{k_{n+1}} - x_{n_k}|$$
$$= \sum_{n=1}^{\infty} \left| \frac{1}{n+1} - \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} < \infty$$

Hence, $(x_n) \in b\nu_0$ further

$$\sum_{n=1}^{\infty} |a_n x_n|^r = \sum_{n=1}^{\infty} \sum_{i=k_n}^{k_{n+1}-1} |a_i x_i|^r = \sum_{n=1}^{\infty} \sum_{i=k_n}^{k_{n+1}-1} |a_i|^r . |x_i|^r$$
$$\sum_{n=1}^{\infty} \sum_{i=k_n}^{k_{n+1}-1} |a_i|^r > \sum_{n=1}^{\infty} \frac{1}{n^r} n^r = \infty$$

which is a contradiction.

Thus, $(b\nu_0) \subseteq l_r$, hence, $(b\nu_0)^{\eta} = l_r$. Thus, we get

$$(b\nu)^{\eta} = l_r = (b\nu_0)^{\eta}$$

therefore

$$(b\nu)^{\eta\eta} = ((b\nu)^{\eta})^{\eta} = l_{\infty} \neq b\nu$$

and

$$(b\nu_0)^{\eta\eta} = ((b\nu_0)^{\eta})^{\eta} = l_r^{\eta} \neq b\nu_0$$

Hence, the sequence spaces $b\nu$ and $b\nu_0$ are not perfect.

Definition: Let w_p be denoted p-cesaro summable sequence space and defined as,

$$w_p = \left\{ (x_n) \in w : \lim_{m \to \infty} \sum_{n=1}^m \frac{1}{m} |x_n - l|^p = 0 \text{ for some } 1 \text{ and } 0$$

Theorem 2.6: $(w_p \cap l_\infty)^{\eta} = l_r$ and the space $w_p \cap l_\infty$ is not perfect. **Proof.** Since $w_p \cap l_\infty \subset l_\infty$, by lemma (ii), $l_\infty^{\eta} \subset (w_p \cap l_\infty)^{\eta}$

$$l_r \subset (w_p \cap l_\infty)^\eta$$
 (therefore $l_\infty = l_r$ from theorem 2.1) (10)

let $(a_n) \notin l_r$, then $\sum_{n=1}^{\infty} |a_n|^r = \infty$ Consider the sequence (x_n) defined as, $(x_n) = 1$ for all $n \in N$, Then $(x_n) \in w_p \cap l_{\infty}$ but

$$\sum_{n=1}^{\infty} |a_n x_n|^r = \sum_{n=1}^{\infty} |a_n|^r |x_n|^r$$

$$\sum_{n=1}^{\infty} |a_n x_n|^r = \infty$$

Hence $(a_n) \notin (w_p \cap l_\infty)^\eta$, therefore

$$(w_p \cap l_\infty)^\eta \subseteq l_r \tag{11}$$

From (10) and (11)

$$(w_p \cap l_\infty)^\eta = l_r$$

therefore

$$(w_p \cap l_\infty)^{\eta\eta} = ((w_p \cap l_\infty)^\eta)^\eta = l_r^\eta = l_\infty \neq w_p \cap l_\infty$$

Hence, the space $w_p \cap l_\infty$ is not perfect.

References

- [1] P.K. Kamthan and m. Gupta, Sequence spaces, Lectures Notes in Pure and Applied Math. Marcel Dokker 1981.
- [2] R.G. Cook, Infinite Matrices and Sequences Spaces, Dover Publi. 1955.
- [3] A.A. Ansari and K.B. Gupta, η -dual of some sequence spaces, FRA-JMS (2011), 179-188.
- [4] I.J. Maddox, Infinite Matrices of Operators, Lectures Notes in Mathematics No. 786, Springer Verlag 1980.
- [5] P. Chandra and B.C. Tripathy, On Generalized Kotte-Toplitz duals of some sequence spaces, Indian J. Pure Appl. Math. 33(8), 1301-1306, (2002).
- [6] Z.U. Ahmed and Mursaleem, J. Indian Math. Soc., 53 (1998), 177-180.
- [7] M. Basarir, Indian J. Pure Appl. Math. 26(10), (1955), 1003-1010.
- [8] I.J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Comb. Phil. Soc. 65, 431-435, (1969).
- [9] C.G. Leascarides, Pac. J. Math. 38(2) (1971), 487-500.
- [10] G. Köthe and O. Toeplitz, J.F. resine u. angrew math. 171 (1934), 193-206.
- [11] G. Köthe, Topological vector spaces I(English), Springer-Verlag, 1969.

146

- [12] I.J. Maddox, Elements of functional analysis, Cambridge University Press, 1970.
- [13] Seraj Ahmed Khan, Ashfaque A. Ansari and Nafis Ahmad, On generalized η -duals of some double sequence spaces, J. of Ramanujan Society of Math. and Math. Sc. Vol.5, No.1, pp. 155-162, 2016.
- [14] A.A. Ansari, Seraj Ahmed Khan, and Nafis Ahmad, Matrix transformations in some sequence spaces, South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 12, No. 1, pp. 103-112, 2016.