K BANHATTI AND K HYPER-BANHATTI INDICES OF WINDMILL GRAPHS

V. R. Kulli¹, B. Chaluvaraju² and H. S. Boregowda³

¹ Department of Mathematics, Gulbarga University, Gulbarga - 585 106, INDIA. E-mail: vrkulli@gmail.com

² Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore -560 056, INDIA E-mail: bchaluvaraju@gmail.com

³ Department of Studies and Research in Mathematics, University Constituent College Campus, Tumkur University, Tumkur - 571 103, INDIA. E-mail: bgsamarasa@gmail.com

Abstract: Let G be a connected graph with vertex set V(G) and edge set E(G). The first and second K Banhatti indices of G are defined as $B_1(G) = \sum_{ue} [d_G(u) + d_G(e)]$ and $B_2(G) = \sum_{ue} [d_G(u)d_G(e)]$, where ue means that the vertex u and edge e are incident in G. The first and second K hyper-Banhatti indices of G are defined as $HB_1(G) = \sum_{ue} [d_G(u) + d_G(e)]^2$ and $HB_2(G) = \sum_{ue} [d_G(u)d_G(e)]^2$, respectively. In this paper, we compute the first and second K Banhatti indices of windmill graphs. In addition, the first and second K hyper-Banhatti indices of dutch and french windmill graphs are determined.

Keywords: K Banhatti indices, K hyper-Banhatti indices, dutch windmill graph and french windmill graph.

2010 Mathematics Subject Classification: 05C05, 05C07, 05C35.

1. Introduction

All graphs considered in this paper are finite, connected, undirected without loops and multiple edges. Any undefined term in this paper may be found in Kulli [5].

Let G be a connected graph with vertex set V(G) and edge set E(G). The degree $d_G(v)$ of a vertex v is the number of vertices adjacent to v. The edge

connecting the vertices u and v will be denoted by uv. Let $d_G(e)$ denote the degree of an edge e in G, which is defined by $d_G(e) = d_G(u) + d_G(v) - 2$ with e = uv.

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. In Chemical Science, the physico- chemical properties of chemical compounds are often modeled by means of molecular graph based structure descriptors, which are also referred to as topological indices, see [3].

The first and second K Banhatti indices of G are defined as $B_1(G) = \sum_{ue} [d_G(u) + d_G(e)]$ and $B_2(G) = \sum_{ue} [d_G(u)d_G(e)]$, where ue means that the vertex u and edge e are incident in G. The K Banhatti indices were introduced by Kulli in [6]. Recently many other indices were studied, for example, in [1], [4], [7], [8] and [10].

The first and second K hyper-Banhatti indices of G are defined as $HB_1(G) = \sum_{ue} [d_G(u) + d_G(e)]^2$ and $HB_2(G) = \sum_{ue} [d_G(u)d_G(e)]^2$. The K hyper-Banhatti indices were introduced by Kulli in [9].

In this paper, we consider dutch and french windmill graphs and determine their K Banhatti indices and also their K hyper-Banhatti indices.

2. Dutch windmill graph

The dutch windmill graph $D_n^{(m)}$ is the graph obtained by taking $m \ge 1$ copies of the cycle C_n ; $n \ge 3$ with a vertex in common. This graph is shown in Figure-1. The dutch windmill graph $D_3^{(m)}$ is called a friendship graph. For more details on windmill graph, see [2].

Figure 1: Dutch windmill graph of $D_n^{(m)}$.

2.1. K Banhatti indices of $D_n^{(m)}$

Theorem 2.1. The first K Banhatti index of a dutch windmill graph is 4m(3m + 2n - 3).

Proof: Let $G = D_n^{(m)}$, where $D_n^{(m)}$ is a dutch windmill graph. By algebraic method, we get |V(G)| = m(n-1) + 1 and |E(G)| = mn. We have two partitions of the vertex set V(G) as follows:

$$V_2 = \{v \in V(G) : d_G(v) = 2\}, |V_2| = m(n-1), \text{ and } V_{2m} = \{v \in V(G) : d_G(v) = 2m\}, |V_{2m}| = 1.$$

Also we have two partitions of the edge set E(G) as follows: $E_4 = E_4^* = \{uv \in E(G) : d_G(u) = 2, d_G(v) = 2m\}, |E_4| = |E_4^*| = m(n-2), \text{ and } E_{2m+2} = E_{2(2m)}^* = \{uv \in E(G) : d_G(u) = d_G(v) = 2\}, |E_{2m+2}| = |E_{2(2m)}^*| = 2m.$ The edge degree partition of the dutch windmill graph G is given in table-1.

$d_G(u), d_G(v) : e = uv \in E(G)$	(2,2)	(2, 2m)
$d_G(e)$	2	2m
Number of edges	m(n-2)	2m

Table 1: Edge degree partition of $D_n^{(m)}$.

Now $B_1(G) = \sum_{ue} [d_G(u) + d_G(e)] = \sum_{e=uv \in E_4} [(d_G(u) + d_G(e)) + (d_G(v) + d_G(e))] + \sum_{e=uv \in E_{2m+2}} [(d_G(u) + d_G(e)) + (d_G(v) + d_G(e))]$ = m(n-2)[(2+2) + (2+2)] + 2m[(2+2m) + (2m+2m)]= 8m(n-2) + 2m(2+6m)= 4m(3m+2n-3).

Corollary 2.1. The first K Banhatti index of a friendship graph $D_3^{(m)}$ is 12m(m+1).

Theorem 2.2. The second K Banhatti index of a dutch windmill graph is $8m(m^2 + m + n - 2)$.

Proof: Let
$$G = D_n^{(m)}$$
, where $D_n^{(m)}$ is a dutch windmill graph. Now $B_2(G) = \sum_{ue} [d_G(u)d_G(e)] = \sum_{e=uv \in E_4^*} [(d_G(u)d_G(e)) + (d_G(v)d_G(e))] + \sum_{e=uv \in E_{2(2m)}^*} [(d_G(u)d_G(e)) + (d_G(v)d_G(e))]$
= $m(n-2)[(2 \times 2) + (2 \times 2)] + 2m[(2 \times 2m) + (2m \times 2m)]$
= $8m(n-2) + 2m(4m + 4m^2)$
= $8m(m^2 + m + n - 2).$

Corollary 2.2. The second K Banhatti index of a friendship graph $D_3^{(m)}$ is $8m(m^2 + m + 1)$.

2.2. K hyper - Banhatti indices of $D_n^{(m)}$

Theorem 2.3. The first K hyper-Banhatti index of a dutch windmill graph is $8m(5m^2 + 2m + 4n - 7)$.

Proof: Let $G = D_n^{(m)}$, where $D_n^{(m)}$ is a dutch windmill graph. Now $HB_1(G) = \sum_{ue} [d_G(u) + d_G(e)]^2 = \sum_{e=uv \in E_4} [(d_G(u) + d_G(e))^2 + (d_G(v) + d_G(e))^2] + \sum_{e=uv \in E_{2m+2}} [(d_G(u) + d_G(e))^2 + (d_G(v) + d_G(e))^2] = m(n-2)[(2+2)^2 + (2+2)^2] + 2m[(2+2m)^2 + (2m+2m)^2] = 32m(n-2) + 2m(4+8m+4m^2+16m^2) = 8m(5m^2+2m+4n-7).$

Corollary 2.3. The first K hyper-Banhatti index of a friendship graph $D_3^{(m)}$ is $8m(5m^2+2m+5)$

Theorem 2.4. The second K hyper-Banhatti index of a dutch windmill graph is $32m(m^4 + m^2 + n - 2)$.

Proof: Let
$$G = D_n^{(m)}$$
, where $D_n^{(m)}$ is a dutch windmill graph. Now $HB_2(G) = \sum_{ue} [d_G(u)d_G(e)]^2 = \sum_{e=uv \in E_4^*} [(d_G(u)d_G(e))^2 + (d_G(v)d_G(e))^2] + \sum_{e=uv \in E_{2(2m)}^*} [(d_G(u)d_G(e))^2 + (d_G(v)d_G(e))^2]$
= $m(n-2)[(2 \times 2)^2 + (2 \times 2)^2] + 2m[(2 \times 2m)^2 + (2m \times 2m)^2]$
= $32m(n-2) + 2m(16m^2 + 16m^4)$
= $32m(m^4 + m^2 + n - 2).$

Corollary 2.4. The second K hyper-Banhatti index of a friendship graph $D_3^{(m)}$ is $32m(m^4 + m^2 + 1)$.

3. French windmill graph

The french windmill graph $F_n^{(m)}$ is the graph obtained by taking $m \ge 2$ copies of the complete graph $K_n; n \ge 2$ with a vertex in common. This graph is shown in Figure-2. The french windmill graph $F_2^{(m)}$ is called a star graph, the french windmill graph $F_3^{(m)}$ is called a friendship graph and the french windmill graph $F_3^{(2)}$ is called a butterfly graph. Further, note that $F_3^{(m)}$ is same as $D_3^{(m)}$.

3.1. K Banhatti indices of $F_n^{(m)}$

Theorem 3.1. The first K Banhatti index of a french windmill graph is $m(n^2 - 3n+2)(3n-5) + (n-1)m[3(n-1)(m+1)-4]$.

Proof: Let $G = F_n^{(m)}$, where $F_n^{(m)}$ is a french windmill graph.

Clearly, we get |V(G)| = m(n-1) + 1 and $|E(G)| = \frac{mn(n-1)}{2}$.

Figure 2: French windmill graph of $F_n^{(m)}$.

We have two partitions of the vertex set
$$V(G)$$
 as follows:
 $V_{n-1} = \{v \in V(G) : d_G(v) = n - 1\}, |V_{n-1}| = m(n - 1), \text{ and}$
 $V_{(n-1)m} = \{v \in V(G) : d_G(v) = (n - 1)m\}, |V_{(n-1)m}| = 1.$
Also we have two partitions of the edge set $E(G)$ as follows:
 $E_{2(n-1)} = E_{2(n-1)}^* = \{uv \in E(G) : d_G(u) = d_G(v) = n - 1\},$
 $|E_{2(n-1)}| = |E_{2(n-1)}^*| = m[\frac{n(n-1)}{2} - (n - 1)] = \frac{m(n^2 - 3n + 2)}{2}, \text{ and}$
 $E_{2(n-1)m} = E_{2(n-1)m}^* = \{uv \in E(G) : d_G(u) = n - 1, d_G(v) = (n - 1)m\},$
 $|E_{2(n-1)m}| = |E_{2(n-1)m}^*| = (n - 1)m.$

The edge degree partition of the french windmill graph G is given in table-2. Now

$d_G(u), d_G(v) : e = uv \in E(G)$	(n-1, n-1)	((n-1), (n-1)m)
$d_G(e)$	2n - 4	(n-1)(m+1)-2
Number of edges	$\frac{m(n^2-3n+2)}{2}$	(n-1)m

Table 2: Edge degree partition of $F_n^{(m)}$.

$$B_1(G) = \sum_{ue} [d_G(u) + d_G(e)] = \sum_{e=uv \in E_{2(n-1)}} [(d_G(u) + d_G(e)) + (d_G(v) + d_G(e))] + (d_G(v) + d_G(e))] = \sum_{e=uv \in E_{2(n-1)}} [(d_G(u) + d_G(e)) + (d_G(v) + d_G(e))] + (d_G(v) + d_G(e))]$$

$$\sum_{e=uv \in E_{2(n-1)m}} \left[(d_G(u) + d_G(e)) + (d_G(v) + d_G(e)) \right]$$

= $\frac{m(n^2 - 3n + 2)}{2} \left[(n-1) + (2n-4) + (n-1) + (2n-4) \right] + (n-1)m\left[(n-1) + (n-1)(m+1) - 2 \right]$

$$= m(n^2 - 3n + 2)(3n - 5) + (n - 1)m[3(n - 1)(m + 1) - 4].$$

Corollary 3.1. The first K Banhatti index of a star graph $F_2^{(m)}$ is m(3m-1).

Corollary 3.2. The first K Banhatti index of a butterfly graph $F_3^{(2)}$ is 72.

Theorem 3.2. The second K Banhatti index of a french windmill graph is $m(n-1)^2 \{2(n-2)^2 + (n-1)(m+1)^2 - 2(m+1)\}.$

$$\begin{aligned} \mathbf{Proof:} \ \text{Let } G &= F_n^{(m)}, \text{ where } F_n^{(m)} \text{ is a french windmill graph. Now } B_2(G) = \\ \sum_{ue} [d_G(u)d_G(e)] &= \sum_{e=uv \in E_2(n-1)} [(d_G(u)d_G(e)) + (d_G(v)d_G(e))] \\ &+ \sum_{e=uv \in E_2(n-1)m} [(d_G(u)d_G(e)) + (d_G(v)d_G(e))] \\ &= \frac{m(n^2 - 3n + 2)}{2} [(n-1)(2n-4) + (n-1)(2n-4)] \\ &+ (n-1)m\{(n-1)[(n-1)(m+1) - 2] + (n-1)m[(n-1)(m+1) - 2]\} \\ &= 2m(n^2 - 3n + 2)(n-1)(n-2) \\ &+ (n-1)m[(n-1)\{(n-1)(m+1) - 2 + m[(n-1)(m+1) - 2]\}] \\ &= m(n-1)^2 \{2(n-2)^2 + (n-1)(m+1)^2 - 2(m+1)\}. \end{aligned}$$

Corollary 3.3. The second K Banhatti index of a star graph $F_2^{(m)}$ is m(m-1)(m+1).

Corollary 3.4. The second K Banhatti index of a butterfly graph $F_3^{(2)}$ is 112.

3.2. K hyper - Banhatti indices of $F_n^{(m)}$

Theorem 3.3. The first K hyper-Banhatti index of a french windmill graph is
$$(n-1)m[(n-2)(3n-5)^2 + (n-1)^2(5m^2 + 8m + 5) + 8 - 12(n-1)(m+1)].$$

Proof: Let $G = F_n^{(m)}$, where $F_n^{(m)}$ is a french windmill graph. Now $HB_1(G) = \sum_{ue} [d_G(u) + d_G(e)]^2 = \sum_{e=uv \in E_{2(n-1)}} [(d_G(u) + d_G(e))^2 + (d_G(v) + d_G(e))^2] + \sum_{e=uv \in E_{2(n-1)m}} [(d_G(u) + d_G(e))^2 + (d_G(v) + d_G(e))^2]$
 $= \frac{m(n^2 - 3n + 2)}{2} \{ [(n-1) + (2n-4)]^2 + [(n-1) + (2n-4)]^2 \}$

$$+ (n-1)m\{[(n-1) + (n-1)(m+1) - 2]^2 + [(n-1)m + (n-1)(m+1) - 2]^2\}$$

$$= m(n-1)(n-2)(3n-5)^2 + (n-1)m[(n-1)^2(m+2)^2 + 4 - 4(n-1)(m+2) + (n-1)^2(2m+1)^2 + 4 - 4(n-1)(2m+1)]$$

$$= (n-1)m[(n-2)(3n-5)^2 + (n-1)^2(5m^2 + 8m + 5) + 8 - 12(n-1)(m+1)].$$

Corollary 3.5. The first K hyper-Banhatti index of a star graph $F_2^{(m)}$ is $m[5m^2 - 4m + 1]$.

Corollary 3.6. The first K hyper-Banhatti index of a butterfly graph $F_3^{(2)}$ is 464.

Theorem 3.4. The second K hyper-Banhatti index of a french windmill graph is $m(n-1)^3 \{4(n-2)^3 + (m^2+1)(mn+n-m-3)^2\}.$

Proof: Let
$$G = F_n^{(m)}$$
, where $F_n^{(m)}$ is a french windmill graph. Now $HB_2(G) = \sum_{ue} [d_G(u)d_G(e)]^2 = \sum_{e=uv \in E_{2(n-1)}} [(d_G(u)d_G(e))^2 + (d_G(v)d_G(e))^2] + (d_G(v)d_G(e))^2] + \sum_{e=uv \in E_{2(n-1)m}} [(d_G(u)d_G(e))^2 + (d_G(v)d_G(e))^2] = \frac{m(n^2 - 3n + 2)}{2} \{ [(n - 1)(2n - 4)]^2 + [(n - 1)(2n - 4)]^2 \} + (n - 1)m\{ [(n - 1)(n - 1)(m + 1) - 2]^2 + [(n - 1)m((n - 1)(m + 1) - 2)]^2 \} = m(n - 1)(n - 2)4(n - 1)^2(n - 2)^2 + (n - 1)m(n - 1)^2[(n - 1)(m + 1) - 2]^2(m^2 + 1) = 4m(n - 1)^3(n - 2)^3 + (n - 1)^3m(m^2 + 1)[mn + n - m - 3]^2 = m(n - 1)^3\{4(n - 2)^3 + (m^2 + 1)(mn + n - m - 3)^2 \}.$

Corollary 3.7. The second K hyper-Banhatti index of a star graph $F_2^{(m)}$ is $m(m^2 + 1)(m-1)^2$.

Corollary 3.8. The second K hyper-Banhatti index of a butterfly graph $F_3^{(2)}$ is 1344.

References

- B. Furtula, I. Gutman and S. Ediz, On difference of Zagreb indices, Discrete Appl. Math. 178(2014) 83-88.
- [2] J. A. Gallian, Dynamic Survey DS6: Graph Labeling, Electronic J. Combin., DS6, (2007) 1-58.

- [3] I. Gutman and N. Trinajstic, Graph Theory and molecular orbitals, Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17(1972) 535-538.
- [4] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157, (2009) 804-811.
- [5] V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- [6] V. R. Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(4), (2016) 213-218.
- [7] V. R. Kulli, On K indices of graphs, International Journal of Fuzzy Mathematical Archive, 10(2), (2016) 105-109.
- [8] V. R. Kulli, The first and second K_a indices and coindices of graphs, International Journal of Mathematical Archive, 7(5), (2016) 71-77.
- [9] V. R. Kulli, On K hyper-Banhatti indices and coindices of graphs, International Research Journal of Pure Algebra, 6(5), (2016) 300-304.
- [10] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54, (2005) 233-239.