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1. Introduction
As usual for any complex number a, we define

(a)g:=1
and
(@), =ala+1)(a+2)(a+3)...(a+n—1)

for any positive integer n. The Gauss hypergeometric series is defined by

B [ “0 ;x} - g <C(LZ;“:Z),’“$” o < 1.
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Suppose that

11 1
2F1[’"’1T ,1—61] 2F1[T’1r 71—5}
n T = T , (1.1)
o [ { wlT 704} o { T’lr 75]

holds for some positive integer n. The modular equation of degree n in signature
r is the relation between «, [ that is indeed by (1.1). The case r = 2 is called
classical. S. Ramanujan has recorded many modular equations in his notebooks
[13], [14] both in classical theory and alternative theories (r= 3, 4 and 6). A proof
of all the modular equations recorded by Ramanujan can be found in [5], [7], [8].
A wonderful introduction of Ramanujan modular equations can be found in [8].

L. Schléfli [16] established certain identities which provides the relation between
P and @), where

P =2s[af(1 - a)(1 - B)]"/*

and )
BL—p)]
Q- [ SIS
a(l — )
for B having degrees 3, 5, 7, 11, 13, 17 and 19 respectively over « in the classical
theory.

Ramanujan recorded eleven Schlafli type mixed modular equations in his first
notebook [13]. R. Russell [15] established certain modular relation which provides
the relation between (af)'/® and ((1 — a)(1 — 3))'/%. Ramanujan also recorded
certain modular equation of these natures in the theory of signature 3, for details
one may refer [7] and [13]. Recently H. H. Chan and W. -C. Liaw [11], M. S.
M. Naika [12] and K. R. Vasuki and C. Chamaraju [17] have derived certain new
modular equations in the theory of signature 3. In fact, Vasuki and Chamaraju
[17] have established certain identities for X, Y, Z and W, where

1

o [0 = Y= i
_ [a* 1y 11_—;: } (1.3)

} ; (1.4)
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and

w""

a*d* (1 —a*)(1 —6%)|°
Brye(1 = B*) (1 —77)
with §*, v* and 0* having degrees ny, ny and nyny respectively over a* in the theory
of signature 3.
In Section 2 of this paper, our aim is to establish new modular equations relating
X, Y, Z and W. We conclude this introduction, by recalling some definitions and
identities which we are going to use in the Section 2. For any complex numbers a
and ¢, with |g| < 1, let

: (1.5)

(a;9)e = (1 — a)(1 — ag)(1 — ag®) -+~ .
In Chapter 16 of his second notebook [1] [13, p. 197] [6, p. 36], Ramanujan define

o0

fl=q) = > (=1)"q"®" I = (g;9)w,

n=—oo

and
X(=4) = (¢ ¢") -
For convenience, we set f(—¢") = f,. From [17], we have

L

f(—=q3) e
1/12—3 = 31 7 s (16)
3" f(—a3)
where
11
2T 2f1 { 3713 1 —oz*}
g3 =€xXp | ——= 11
\/g 2F1 |: 313 ,Oé*:|
Using (1.6) in (1.2)-(1.5) respectively and by analytic continuation, we have
X = flfnlfnzfnlng 7 (17)
f3f3n1f3n2f3n1n2
Y = fn2fn1n2f3f3n1 (18)
fSnzf?mlmflfm7
7 — fnlfnlnzfi’)f?mg (19)

B f3n1f3n1n2f1fn2 7
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and
W — JiSnins fon, fan, (1.10)

B f3f3n1n2fn1fn2 '
In the classical theory, we have from [5, p. 124]

flo 2 (1.11)

¢ f(=¢)  [a(l—a)]=

where

Let

Q
Il

and

D =

Then ) ) .
(4) 06+E:D8+ﬁ+D4+ﬁ—2, (1.12)

where «, (3, v, and § having degrees 1, 3, 5 and 15 respectively.
i B2y 8B~ ) p1sva (B ) (4P
(ZZ) + m - + ﬁ + + ﬁ + F -

1
8 <A6+E) — 54 =0, (1.13)
where «, (3, v, and § having degrees 1, 3, 7 and 21 respectively.

(4ii) D* + % — (D2 + %) -2 (A2 - %) =0, (1.14)



Certain new modular equations of mixzed degree in the theory of signature 3 13

where «, (3, v, and § having degrees 1, 3, 11 and 33 respectively. The modular
equation (1.14) is due to Ramanujan, and a simple proof of which has been given
by Baruah [4], the modular equation (1.13) is due to Baruah [3], and (1.12) is due
to Vasuki and B. R. Srivatsa Kumar [21].

2. Certain new modular equations of mixed degree in the theory of
signature 3

In this section, we deduce certain P-() eta function identities and from them we
find certain new modular equation of mixed degree in the theory of signature 3.

Lemma 2.1 Let

P = ‘lflfQ and Q = 1f2f4 :
q* f3fs q2 fe J12
Then,
0 8 P\?® 0 4 P\? - 0 2 P\ 2
(F) ’ (@) —7{(;) y (@) - (5) ’ (@) "
81
{(PQ)M (PQ)Q] + 24.
Proof. Let s
Then, from [13, p. 327], [6, Entry 51, p. 204], we have
9 AN (AN
(A1A2>2—|— (A1A2)2 = <A_1) + (A_2> . (22)

Changing ¢ to ¢* in (2.2), we obtain

o+ = (1) + (5)

From (2.2) and the above, we obtain

v o (2 +(3) ) () + ()
()~ (4]
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From [19], we have, if

A= g1 X(@) and B :=qs
then
1

e~ sl | (5) - (3)

Changing ¢ to —q in the above, we obtain

(5 (3 - o o [ i)

(A’B)? ’
where -
A/ — q112 X\—4q ]
X(—¢%)
Now using the fact that
A AA
e A'B = —
5= AT

in the above, we find that

ALA, 6 42 \% P\ 4 ) 4
i) i) (@) +(F) -

Using this in (2.3), we obtain the required result.

)+ ()]

Theorem 2.1 If o*, 5%, v* and ¢* have degrees 1, 2, 2 and 4 respectively, then

ZS+L—7{Z4+L} = {X2+9—2] {ZQ+L]+24
78 Z4 X2 7?2

Proof. The Theorem 2.1 follow from Lemma 2.1, (1.7) and (1.9).

Remark: For a slightly different proof of the Theorem 2.1, one may refer [17].
Lemma 2.2 [13, p. 330], [6, p. 215]. Let

_ fifs a Q= fafio
4 f3fis " qfefsn
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o ()@l e

Proof. Changing ¢ to ¢° in (2.2), we obtain

9 A \°© Ao\ °
AsAyg)? = (=2 =) .
(s + ) (mJ +(&

From (2.2) and the above, we deduce that

, 81 A1 A, 2(&&»2_
(PQ) +<PQ>2+9{<A5A10) A, =

Then,

3 (5) () - ()

(P)+ o) "\ aa ) T\aa,) (2:5)

Let

e S 20
T g, '

Then, from [16], [20], we have

Changing ¢ to ¢° in the above, and then multiplying the resulting identity with
(2.7), we deduced that

64 B1B; 3 BsBy5 ’
B1B3BsBy5)® + +8( )+C——)
(B1BsBsBrs) (B1B3BsBi5)3 BsBi3 B, By
Q 6 n P ‘ | [ ArAw ‘ n Ay A5 \° (2.8)
P Q AsAs A1 A ' '
From [13, p. 327], [6, p. 205 ], we have
9 B\’ A\?
2 — — — — —
B - i (A) 8<B>, (2.9)
where
A= {2 and = {1 .
q2 f3 q2 fo
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Changing ¢ to ¢° in the above and then multiplying the resulting identity with
(2.9), we obtain

81 AA N\ [ AsAp)?
PQ)? -9 = =
PO pop {(A5A10> *(AlAg
(BlBg)3+ (85315>3
B;Bis B B3
From (2.10) and (2.8), we deduce that
o () (dtey ) (B (B0
(PQ)2 A5A10 AIAQ B5Bl5 BlB3
(2) + () {(G3) - ()
Q P AgAs A1A ’

From (2.5) and the above, we found that
81 BiB; \* BsBis\° (P ° Q\°
v |(mse) +(550) |- (2) +(5) - e
p\?2 0\?
(@) + (%)

64
(B1B2B;5Bi5)?

(B1B2BsBys)” + . (2.10)

+8

(PQ)* +

Employing (1.11) in (1.12), we deduce that
() (5) ~(6) (5) -
B5Bl5 BIB3 Q P
Using this in (2.11), we obtain
P\* 4
Y (¢
(0) + (%)

P = () +(7) =
o @)

This implies
Taking square root on both sides of the above, we complete the proof.

— 2.

+8

2
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Theorem 2.2 If o*, §*, v* and 6" have degrees 1, 2, 5 and 10 respectively, then

9 . 1 1
X—F}—Z +%—4[Z+E}.
Proof. From (1.7) and (1.9), we have
P
PQ=X and — =17,
Q

where P and () are as in Lemma 2.2. Using these in Lemma 2.2, we obtain the
required result.

Lemma 2.3 [13, p. 330], [6, p. 218 | If

_fehs
q%f2f15

1 P\ 2 9) 2
PC“%Z(@) +(;) -

Recently Bhargava, Vasuki and Rajanna [10] have proved Lemma 2.3 using only
theta function identities which are deduced from Ramanujan’s 1¢; summation for-
mula.

f3f10
q%flf%’

and Q =

then

Theorem 2.3 If o*, §*, v* and 6" have degrees 1, 2, 5 and 10 respectively, then

1 1
Y+ —=27"+— -1
+ % + 7
Proof. We have, from (1.8) and (1.9)
Q
Q an 2 ,

where P and @) are as in Lemma 2.3. Using these in Lemma 2.3, we obtain the
required result.

Lemma 2.4 [20] If

fife

_ fol()
q7 fsfs

and Q= ,
q%flsf:so
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then,

(P + oy = (g) ! (%) -

For a proof, see [20].

(5) + ()

Theorem 2.4 If o*, 5%, v* and 6" have degrees 1, 2, 5, and 10 respectively, then

P Q
—5[@+F}+20.

81 1 1 1
X2+ﬁ:Y3+ﬁ—5{Y2+ﬁ}—5[Y+?]+20.

Proof. We have, from (1.7) and (1.8),
PQ=X and ==Y,

where P and () are as in Lemma 2.4. Using these in Lemma 2.4, we obtain the
Theorem 2.4.

Lemma 2.5 [13, p. 330], [6, p. 214 |. If

P = {f3f5 and Q = {Gflo ,
q3 f1fis q3 f2f30

1 P\’ @\’
P — == —= 4.
v+ og=(g) +(7) +
For a simple proof of the above using Ramanujan’s 17; summation formula, see

[10].
Theorem 2.5 If o*, §*, v* and 0" have degrees 1, 2, 5 and 10 respectively, then

then

.1 1
W34 — +4=Y + —.
+ 5+ + 5

Proof. We have, from (1.8) and (1.10),
PO=W and =<-vY,

where P and () are as in Lemma 2.5. Using these in Lemma 2.5, we obtain the
Theorem 2.5.
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Lemma 2.6 If
p.— fifz

q%f3f21

— JoJ14
. q%f6f427

then

P\°  [Q\° , 81 9 B
(6) +(5) + @+ pogm +4[Pa+ o] +20-
: 104 PQ+ .

P\ 3 3
P\ (@

(@) + (%) T

The above Lemma is due to Baruah [2]. A simple proof of the same have been

given by Vasuki and Sharath [18].

Theorem 2.6 Let o, 5*, v* and 6* have degrees 1, 2, 7 and 14 respectively. Then,

1 81 9 1 9
294 — 4+ X2 44X+ | +20=2 |22+ — | |10+ X + =]
+ Gt Xt mt [ +X}+o { +23H0+ +X}

Proof. It is easy to see from (1.7) and (1.9), that

Q an P Y

where P and () are as in Lemma 2.6. Using these in Lemma 2.6, we obtain the
required result.

Lemma 2.7 If I fof
p._ g q . _JeJ7
! fafia - “ Q%fzfm’
then . . .
(PO + g 2 (PO + g = 7P+ (] =

&)+ @) [ - @ orre ) o

Proof. Changing ¢ to ¢” in (2.2) then multiplying the resulting identity with (2.2),

we find that
P\ 2 0 2
(@)« (%)

81
2
(A1 A3 A7A14)" + (A Ay As A, +9
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1 A A7 \® (A AL °
(PQf+KPQw%—(%AM)-+<Aﬂ%). (2.12)

Changing ¢ to ¢7 in (2.7) and then multiplying the resulting identity with (2.7),
we find that
<BlB3 )3 N (37321>3
Br7 By B Bs
1

—<&&ﬁ:(AMﬁG
(PQ)° Ay A7 AAy

Changing ¢ to ¢7 in (2.9) and then multiplying the resulting identity with (2.9),
we obtain
P\ 2 0\’
(@) ~(7)
<&&)Z(&&ﬁ3
BBy B Bs
P\ 2 0\?
(@) (%)

(&&yl(&&v3
BBy B1Bs

64
B{B3B-By)? 8
( 103Dy 21) +(BlB3B7B21)2+

(PQ)° + : (2.13)

81

A Ay A AL + —
Ao 3 A A

9

64
(B1B3B;B2;)?

(B1B3B; By )® + 8 : (2.14)

Subtracting (2.12) from (2.14), we obtain

64
(B1B3B7Bs1)

(B1B3B7By;)® + ; +18

1 A A \® (A4 °
ror s s+ (2) + (55)
PO+ pgy T\ A4, AoA;

Adding the above with (2.13), we obtain

64 P\* [Q\’| _ 1
s gt o (2) +§)] - ot e o
Employing (1.11) in (1.13), we obtain
(PO + pgzs 18 | (PP + s | +9 | (P + o | | xF 4 5 -

(PQ)S (PQ)? (PQ)2 Xz
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64
X3+ —} — 54 =0,
R
where X = By B3B;Bs;. Using (2.15) in the above, we find that
(PQ)? + [X3+ s }—2{(PQ)3+ ! }— <£>2+<9)2 +6
(PQ)? X3 (PQ)? Q P '

Squaring this on both sides and then using (2.15), to eliminate X, we obtain the
required result.

Theorem 2.7 Let o, 5%, v* and ¢* have degrees 1, 2, 7 and 14 respectively. Then,

A A

1 1
{W + W] [5 <Z3 + ﬁ> +6} + 14.

Proof. It is easy to see from (1.8) and (1.9) that

1 1
Zg+——2[26+—] —7{Z3+—} =Y'+ —+

PQ =7 and — =Y,
Q

where P and @) are as in Lemma 2.7. Using these in Lemma 2.7, we obtain the
required result.

Lemma 2.8 Let

fifo

J7J1a
= = d =
inn M@

= — )
q* fo1 fa2

Then,

@)+ (%) -=[@) () (a) + ()

3 9° 2 92 i
= (PQ)" + POy + 14 [(PQ) + (PQ)J + 105 {PQJF PQ} + 434.

o

Proof. Let

JifeS7fa2 M= q%f:afa and N — q%f21f42

T G fofafiafa Fifo I
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Then, from Lemma 2.7, we have

) [ @) b o

and from Lemma 2.6, we have

1 1 1
O+ — + ———— +81(MN?+4|—— +9MN| +20 =
+Cﬁ+(MN)2+ ( )+ [MN+ }+

2 {03 + %1 [ﬁ +9MN + 10] : (2.17)

Eliminating C' between (2.16) and (2.17) using Maple, we obtain
A(M,N)B(M,N) =0,
where
A(M,N) = N®+ M®— MN —63M"N* —63M>N" — TMN® — TM°N —
434(MN)* — 42M°N? — 42M*N® — 14(M N)? — 945(M N)® — 105(M N )*—
729(MN)" — 1134(MN)®,
and
B(M,N) = N®+ M®—~ MN + 153M"N® + 153M*N™ + 17TM N® + 17TM° N+
414(MN)* +154MPN? 4+ 154M*N° + 6(MN)? + 63(MN)® + 7(MN)*—
729(MN)" + 486(M N)S.
By definition of M and N, we see that
M =qi (1+q+3¢+3¢+8¢" +9° + ...

and .
N =g+ (1 +q"+3¢" + 342 + ) .
Using these in A(M, N) and B(M, N), we find that

A(M,N) = —588¢" — 2681¢™ — 17969¢"° — 728289¢'¢ + ...,
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and
B(M,N) = 24q¢® 4 140¢* + 836¢° + 3468¢° + ...,

Now ¢ 3B(M,N) # 0 as ¢ — 0, where as ¢ 3A(M,N) — 0 as ¢ — 0 thus
q2A(M,N) = 0 in some neighborhood of ¢ = 0. Thus by analytic continuation,
A(M, N) =0 for all values ¢ with |¢| < 1. Using the fact that M = & and N = %
in B(M, N) =0, we obtain the required result.

Theorem 2.8 Let o, 5%, v* and §* have degrees 1, 2, 7 and 14 respectively. Then,
1 1 9 1
Yi4 — — 42|V 4+ | 7| X+ =] |V + = | =
rgrmie ] -t g] e

X3
Proof. We have, from (1.7) and (1.8), that

, 9 , 92 9
X+ —=+14|X +ﬁ + 105 X+} + 434.

PQ=X and Q:Y,

where P and @) are as in Lemma 2.8. Using these in Lemma 2.8, we obtain the
required result.

Lemma 2.9 Let

fifo

f9f18
= — d =
ann M9

= — )
q4 far f5a

Then,
94
(PQ)*

) -o(8) m(y -

Proof. Let

(PQ)* +

(PQ;)Q} {QQ—Q + 27E — 519 + 27] +81 =

P2 Q P
2 2
73 (%) + 81 (g)
_ _Bsfe
g1 fofus

+ {(PQ)2 +

Q P
caifs2 vl

Then, from [17], we have

2
9
(—) = PR+ R + 3. (2.18)
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Changing ¢ to ¢* in the above, we obtain

Q\* 9
(ﬁ) —QR‘{'@‘F&

Now eliminating R between (2.18) and the above, we obtain the required result.

Theorem 2.9 Let o, 5%, v* and 6* have degrees 1, 2, 9 and 18 respectively. Then,

94 92 1
X4+ﬁ+ [X2+ﬁ] [9Y2+27?—51Y+27} + 81 =

1 9
Yo —27Y* 4+ 225Y% — 9 [73Y* + 81— | + 81 |5Y + —| .
Y? Y
Proof. We have, from (1.7) and (1.8), that
PQ=X d - =Y.
Q an iz

where P and () are as in Lemma 2.9. Using these in Lemma 2.9, we obtain the
required result.

Lemma 2.10 [9] Let

— fifn a Q= S22
. qf3f33 . q2f6f66.

ror 5= () + (5) -+|(%) + (&)

Proof. Multiplying Entry 14(i) and 14(ii) [5, p. 408] to eliminate v/mm/' and then
transforming the resulting modular equation in theta function identity, we obtain
Lemma 2.10.

Theorem 2.10 Let o*, §*, v* and ¢6* have degrees 1, 2, 11 and 22 respectively.
Then,

P

Then,

+4.

9 . , 1
== — —4|Z2°+ | +4
X+ 5=2+ 4{ +Zz}+
Proof. We have, from (1.7) and (1.9) that
P
PQ=X and @ =7,
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where P and () are as in Lemma 2.10. Using these in Lemma 2.10, we obtain the
required result.

Lemma 2.11 Let

— §f1f66 0 — JoS11
i fafoo wnd @ q%f2f33.
Then,
(PO + =3 | (PO + | #4| (PP + s |5 (PP + | +
(PQ) (PQ)* (PQ)? (PQ)?

o5l (5)(9)

Proof. Changing ¢ to ¢'' in (2.2) then multiplying the resulting identity with

(2.2), we find that
P\? %
(0) + (%)

1 Ay Ay 6 A1 As 0
(PO + a5 * (A1A22> 4 (AzAn) , (2.19)

Changing ¢ to ¢*' in (2.7) and then multiplying the resulting identity with (2.7),

81
A1 A Ay Ago)? + +9
( 14124171 22) (A1A2A11A22)2

we obtain
64 B1Bs 3 B11 B33 °
B, BsBi, Bss)? -
(B1B3B11B33)” + (ByB3By1 By ? +8 (311333) * ( B, B; >
1 A1A22 6 (A2A11>6
PO - N _ 2.20
(PQ) (PQ)® <A2A11> A1Az 220

Changing ¢ to ¢"' in (2.9) and then multiplying the same with (2.9), we obtain

81 P\* [Q\®
Ay Ay Ay Ayy)? ol(E AN
( 143124171 22) +(A1A2A11A22)2 9 (Q) +<P>
64 BiB; \° Bi1Bss\®
By BsB11B33)% + —8( >+( > 2.21
(B1 BB Byg) (B1B3B11Bs3)3 B11Bs33 B1B3 (2.21)
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Now adding (2.19) and (2.20) and then subtracting the resulting identity from
(2.21), we deduce that

JGROI
PO+ ﬁ | (2.22)

Employing (1.11) in (1.14), we deduce that

1 1 X 2
P 2 _ P | — — — | =
PRI+ gy 3{ QJFPQ] 2[2+X1 .
where
= 1
B1B3B11Bss

Now, eliminating X between (2.22) and the above, we obtain the required result.

Theorem 2.11 Let o*, §*, 7* and §* have degrees 1, 2, 11 and 22 respectively.
Then,

1 1 1 1
Z5+ﬁ—3 {Z”‘%—ﬁ} +4 {Z%—} -5 {224——} +7 [Z+§} :Y2+ﬁ+6.

Proof. We have, from (1.8) and (1.9) that
PQ=7Z and ==Y,

where P and () are as in Lemma 2.11. Using these in Lemma 2.11, we obtain the
required result.

Lemma 2.12 Let

P = {lfQ and Q= 1{11&
qt f3fe q* f33fe6
Then,
il gl -
(PQ) +(PQ>5 22 [(PQ) +(PQ)4 + 143 | (PQ) +(PQ)3
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(5) + ()

[2893 — 275 (PQ + PiQ)

2

sl il e 2] (£)'(8)

o (e )] - |(5) + ()
—110 ((PQ)2 + (P92)2) + 11 ((PQ)3 - (PQ;)?))] + 16280.

The proof of Lemma 2.12 is same as proof of Lemma 2.8. We use Lemma 2.10 and
Lemma 2.11 to prove Lemma 2.12.

Theorem 2.12 Let o*, 8%, +* and §* have degrees 1, 2, 11 and 22 respectively.
Then,

X5+9—5—22 X4+9—4 + 143 X3+9—3 — 396 X2+9—2 42992 X+2 =

X5 X4 X3 X2 X|
i+Y6— i+Y4 286 + 44 X+g - i+Y2 2893 — 275 X+2
Y6 Y4 X Y2 X

2 92 3 93
—110 (X + F) + 11 (X + F)} + 16280.
Proof. We have, from (1.7) and (1.8) that
Q
Q and Iz \

where P and () are as in Lemma 2.12. Using these in Lemma 2.12, we obtain the
required result.
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