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Abstract: In this work, we introduce Lupas-Kumar-Pathan -type operators and
then study its convergence properties by using Cauchy-Schwarz inequalities of in-
tegration and summation and Chebyshev inequality of integration. We obtain the
recurrence relations and some properties of these operators. These results are then
applied with a view to obtaining some characteristic relations on central moments.
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1. Introduction

Lupas proposed a family of linear positive operators mapping C[0,∞) into
C[0,∞), the class of all bounded and continuous functions on C[0,∞), namely
(see Derriennic [1])

Vn(f, x) =
∞∑
k=0

Pn.k(x)f

(
k

n

)
, ∀x ∈ C[0,∞), Pn.k(x) =

(
n+ k − 1
k

)
xk

(1 + x)n+k
.

(1)
Later on Sahai and Prasad [5] proposed a modification of Lupas type operators
defined for functions integrable on C[0,∞) in the form

Bn(f, x) = (n− 1)
∞∑
k=0

Pn.k(x)

∫ ∞
0

Pn.k(t)f(t)dt, (2)
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Pn.k(x) is given in equation (1).
Recently, Kumar and Pathan [3] defined a transformation formula for a bounded
uniformly continuous function f : R→ R such that

Hkf(x) =
1

k

∫ ∞
−∞

f(u)g

(
u− x
k

)
du, (3)

where k > 0, and g(x) be a probability density function defined by

∫ ∞
−∞

g(x)dx = 1,

otherwise g(x) = 0.
Here, in this work we have defined a family of linear positive operators for the
functions integrable on [0,∞) in the form

Hα,β{f(y)}(x) =
∞∑
n=0

Cα,β
n (x)

∫ ∞
0

Gα,β
n (x, y)f(y)dy, (4)

where Cα,β
n (x) =

(
α + (β + 1)n
n

)
xn

(1 + x)βn+n
and

Gα,β
n (x, y) = (α + βn+ 1)(1 + x)n(1 + y)−α−βn−2×

2F1

[
−n, α + βn+ 2; 1;

xy

(1 + x)(1 + y)

]
defined ∀y ∈ [0,∞), and otherwise, Gα,β

n (x, y) = 0 and

∫ ∞
0

Gα,β
n (x, y)dy = 1,

provided that α ≥ 0, 0 ≤
∣∣∣∣ x

(1 + x)β+1

∣∣∣∣ < ∣∣∣∣ ββ

(β + 1)β+1

∣∣∣∣, ∀x ≥ 0. Here, the hyperge-

ometric polynomial of degree n is given by

2F1[−n, a; c;x] =
n∑
r=0

(−n)r(a)r
(c)r

xr (5)

and the Pochhammer symbol is

(a)r = a(a+ 1)(a+ 2)...(a+ r − 1) and (a)0 = 1 (see Rainville [4])

Put f(x) = 1 in Eqn. (4), and then use the result of Srivastava and Manocha [6,
p. 355, Eqn. (5)] and Riordan array proofs of identities in Goulds book [Renzo
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Sprugnoli, Dipartimento di Sistemi e Informatica, Viale Morgagni, 65 Firenze
(Italy), February, 2006], under the conditions given in Eqns. (5), it reduces to

Hα,β{1}(x) =
∞∑
n=0

Cα,β
n (x)

∫ ∞
0

Gα,β
n (x, y)dy = Kα,β(x)

⇒
∞∑
n=0

Cα,β
n (x) = Kα,β(x) =

(1 + u(x))α+1

(1− βu(x))
,

where
x

(1 + x)β+1
=

u(x)

(1 + u(x))β+1
, u(0) = 0 and

∣∣∣∣ x

(1 + x)β+1

∣∣∣∣ < ∣∣∣∣ ββ

(β + 1)β+1

∣∣∣∣ .
(6)

Again, Kα,β(x) > 0, ∀α ≥ 0,

∣∣∣∣ x

(1 + x)β+1

∣∣∣∣ < ∣∣∣∣ ββ

(β + 1)β+1

∣∣∣∣ and x ≥ 0 Hence, the

operator Hα,β{f(y)}(x) is a family of linear positive operators for the functions
integrable on [0,∞) (see, Yuankwei and Shunsheng [8]). (7)
Further, put α = N − 1 and β = 0 in Eqn. (4) and use Eqns. (1), (2), (5) and (6)
to get relation with Derriennic [1] and Sahai and Prasad [5] operators

HN−1,0{1}(x) =
∞∑
n=0

CN−1,0
n (x) = BN(1, x) =

1

(1 + x)N−1
(8)

Hence due to Eqns. (7) and (8), with the conditions given in Eqn. (5), the operator
given in Eqn. (4), may be defined by Lupas-Kumar-Pathan type operators.
In this work, we study the convergence properties and applications to obtain some
characteristic results on approximations.

2. The Convergence Properties of the Operator Hα,β{f(y)}(x)
In this section, on using Cauchy Schwarz inequalities of integration and summation
(see Steele [7]) and Chebyshev inequality of integration , defined in the form (see
Devore and Berk [2] and Steele [7])
Let Y be a real continuous random variables with the mean µ =

∫∞
−∞ yg(y)dy and

the variance V (y) = σ2 =
∫∞
−∞(y − µ)2g(y)dy here, g(y) is a probability density

function defined ∀y ∈ (−∞,∞).

Then,
∫ µ−δ
−∞ (y−µ)2g(y)dy+

∫∞
µ+δ

(y−µ)2g(y)dy ≤ σ2, and again, P (|Y −µ| ≥ δ) ≤ σ2

δ2

which implies that ∫ µ−δ

−∞
g(y)dy +

∫ ∞
µ+δ

g(y)dy ≤ σ2

δ2
. (9)
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we obtain the convergence properties of the operator Hα,β{f(y)}(x) given in Eqn.
(4). The mean µ of given distribution is defined in Eqn. (9).
Consider the inequality

|Hα,β{f(y)}(x)−f(µ)| ≤ |Hα,β{f(y)}(x)−Hα,β{f(µ)}(x)|+|Hα,β{f(µ)}(x)−f(µ)|

≤

∣∣∣∣∣
∞∑
n=0

Cα,β
n (x)

∫ ∞
0

Gα,β
n (x, y){f(y)− f(µ)}dy

∣∣∣∣∣+ |f(µ){Kα,β(x)− 1}| (10)

Now use Cauchy-Schwarz inequality of integration in inequality (10) to get that

|Hα,β{f(y)}(x)− f(µ)|

≤

∣∣∣∣∣
∞∑
n=0

Cα,β
n (x)

(∫ ∞
0

Gα,β
n (x, y)dy

) 1
2
(∫ ∞

0

Gα,β
n (x, y){f(y)− f(µ)}2dy

) 1
2

∣∣∣∣∣
+|f(µ)||Kα,β(x)− 1| (11)

But
∫∞
0
Gα,β
n (x, y)dy = 1 (see Eqn. (6)), so that on using Cauchy-Schwarz inequal-

ity of summation in inequality (11), it becomes

|Hα,β{f(y)}(x)− f(µ)|

≤

∣∣∣∣∣∣
(
∞∑
n=0

Cα,β
n (x)

) 1
2
(
∞∑
n=0

Cα,β
n (x)

∫ ∞
0

Gα,β
n (x, y){f(y)− f(µ)}2dy

) 1
2

∣∣∣∣∣∣
+|f(µ)||Kα,β(x)− 1| (12)

Now, let |f(y)− f(µ)| < ε for |y− µ| < δ, then the inequality (12) may be written
as

|Hα,β{f(y)}(x)− f(µ)|

≤

∣∣∣∣∣∣
(
∞∑
n=0

Cα,β
n (x)

) 1
2
(
ε2

δ2

∞∑
n=0

Cα,β
n (x)

∫ ∞
0

|y − µ|2Gα,β
n (x, y)dy

) 1
2

∣∣∣∣∣∣
+|f(µ)||Kα,β(x)− 1|

{
1

δ2

∫ ∞
0

|y − µ|2Gα,β
n (x, y)dy

} 1
2

(13)

Again, making an application of the inequality (9) and Eqn. (6) in Eqn. (13), (as

Kα,β(x) > 0 ∀α ≥ 0,

∣∣∣∣ x

(1 + x)β+1

∣∣∣∣ < ∣∣∣∣ ββ

(β + 1)β+1

∣∣∣∣ and x ≥ 0, we get

|Hα,β{f(y)}(x)− f(µ)| ≤ εσ

δ2
|Kα,β(x)|+ |f(µ)||{Kα,β(x)− 1}| σ

δ2
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≤ εσ

δ2
|Kα,β(x)|+ |Kα,β(x) + 1|Mσ

δ2
≤ εσ

δ2
+ 2

Mσ

δ2
(14)

Now ε is arbitrary and then set ε → 0, |f(y)| < M and choose δ >> Mσ in Eqn.
(14), Hα,β{f(y)}(x) converges to f(µ)∀y ∈ [0,∞) and x ≥ 0. We may say that
under the conditions of Eqn. (5), ε→ 0, |f(y)| < M and δ >> Mσ, there exists

Hα,β{f(y)}(x)→ f(µ), ∀ y ∈ [0,∞) and x ≥ 0. (15)

3. The Characteristic Relations of Operator Hα,β{f(y)}(x) with Central
Moments due to density Gα,β

n (x, y) Auxiliary Relations
On using the formula of mean given in Eqn. (9) due to density Gα,β

n (x, y) defined
in Eqn. (5), we have

µ(x) =
(1 + x)n

(α + βn)
2F1

[
−n, 2; 1;

x

1 + x

]
=

1

(α + βn)
[1− nx],

such that

µ(0) =
1

(α + βn)
and µ(1) =

(2)n

(α + βn)
2F1

[
−n, 2; 1;

1

2

]
, for all n = 0, 1, 2, ...

(16)
Again, the m− th central moment due to density Gα,β

n (x, y) is defined by

Mα,β
m,n(x;µ(x)) =

∫ ∞
0

(y − µ(x))mGα,β
n (x, y)dy (17)

Therefore, making use of Eqns. (4) and (5) in Eqn. (17), we find the relation of
the operator Hα,β{f(y)}(x) with central moment due to density Gα,β

n (x, y) in the
form

Hα,β{(y − µ(x))m}(x) =
∞∑
n=0

Cα,β
n (x)Mα,β

m,n(x;µ(x)) (18)

Further, from Eqn. (17), we may write

Mα,β
m,n(x;µ(x)) =

m∑
s=0

(
m
s

)(
α + βn
s

)−1
(1 + x)n

× 2F1

[
−n, s+ 1; 1;

x

1 + x

]
(−µ(x))m−s (19)

Here, for all n = 0, 1, 2, ..., and x ≥ 0,

(
m
s

)−1
=
s!(α− s)!

α!
, the hypergeometric

polynomial of degree n is given by Eqn. (5).
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Now, put m = 1, 2, 3, 4 in Eqn. (19) and use the result (16), we may com-
pute the first, second, third and fourth moments respectively by following formula

Mα,β
1,n (x;µ(x)) =

∑1
s=0

(
1
s

)(
α + βn
s

)−1
(1 + x)n

× 2F1

[
−n, s+ 1; 1;

x

1 + x

]
(−µ(x))1−s = 0, (always),

Mα,β
2,n (x;µ(x)) =

∑2
s=0

(
2
s

)(
α + βn
s

)−1
(1 + x)n

×2F1

[
−n, s+ 1; 1;

x

1 + x

]
(−µ(x))2−s

=

[
(µ(x))2 + 2µ(x)

(nx− 1)

(α + βn)
+

(n(n− 1)x2 − 4nx+ 2)

(α + βn)(α + βn− 1)

]
,

Mα,β
3,n (x;µ(x)) =

∑3
s=0

(
3
s

)(
α + βn
s

)−1
(1 + x)n

×2F1

[
−n, s+ 1; 1;

x

1 + x

]
(−µ(x))3−s

=

[
−(µ(x))3 − 2(µ(x))2

(nx− 1)

(α + βn)
− 3µ(x)

(n(n− 1)x2 − 4nx+ 2)

(α + βn)(α + βn− 1)

+
(6− 18nx+ 9n(n− 1)x2 − n(n− 1)(n− 2)x3)

(α + βn)(α + βn− 1)(α + βn− 2)

]
,

and Mα,β
4,n (x;µ(x)) =

∑4
s=0

(
4
s

)(
α + βn
s

)−1
(1 + x)n

×2F1

[
−n, s+ 1; 1;

x

1 + x

]
(−µ(x))4−s

=

[
(µ(x))4 + 4(µ(x))3

(nx− 1)

(α + βn)
+ 6(µ(x))2

(n(n− 1)x2 − 4nx+ 2)

(α + βn)(α + βn− 1)

+4µ(x)
(n(n− 1)(n− 2)x3 − 9n(n− 1)x2 + 18nx− 6)

(α + βn)(α + βn− 1)(α + βn− 2)
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+
(n(n− 1)(n− 2)(n− 3)x4 − 16n(n− 1)(n− 2)x3 + 72n(n− 1)x2 − 96nx+ 24)

(α + βn)(α + βn− 1)(α + βn− 2)(α + βn− 3)

]
(20)

4. Main relations
Theorem 1 If a, b, c ∈ R (the set of real numbers) such that b2 ≥ 4ac, a > 0 and

set (y − µ(x)) ≥ −b±
√
b2 − 4ac

2a
, ∀x ≥ 0, then following inequalities hold

(i) Mα,β
4,n (x;µ(x)) ≥

(
c
a

)2
(ii) a2Mα,β

4,n (x;µ(x)) + 2abMα,β
3,n (x;µ(x)) + (b2 + 2ac)Mα,β

2,n (x;µ(x)) + c2 ≥ 0.

(iii) ∣∣∣∣∣∣∣∣∣
Mα,β

4,n (x;µ(x)) Mα,β
3,n (x;µ(x)) Mα,β

2,n (x;µ(x))

Mα,β
3,n (x;µ(x)) Mα,β

2,n (x;µ(x)) 0

Mα,β
2,n (x;µ(x)) 0 1

∣∣∣∣∣∣∣∣∣ ≥ 0. (21)

Here, for the consistency conditions, it should be 0 ≤ Mα,β
2,n (x;µ(x)) < ∞, Mα,β

4,n

(x;µ(x)) > (Mα,β
2,n (x;µ(x)))2 and Mα,β

4,n (x;µ(x))Mα,β
2,n (x;µ(x)) > (Mα,β

3,n (x;µ(x)))2.

Proof: (i) Since (y−µ(x)) ≥ −b±
√
b2 − 4ac

2a
, ∀x ≥ 0, a > 0, thus a(y−µ(x))2 +

b(y − µ(x)) + c ≥ 0.
Therefore, ∫ ∞

0

{
a(y − µ(x))2 + b(y − µ(x)) + c

}
Gα,β
n (x, y)dy ≥ 0. (22)

Now, use Eqns. (16), (17) and (20) in inequality (22) and then apply Chauchy-
Schwarz inequality (Steele [7]) we get,

0 ≤
∫ ∞
0

{
a(y − µ(x))2 + b(y − µ(x)) + c

}
Gα,β
n (x, y)dy ≤

{∫ ∞
0

Gα,β
n (x, y)dy

}1/2

{∫ ∞
0

{
a(y − µ(x))2 + b(y − µ(x)) + c

}2
Gα,β
n (x, y)dy

}1/2

(23)

and then using above consistency condition and Eqn. (22), we get the result
(21, (i)).
(ii) Again, use Eqns. (5),(16), (17) and (20) in inequality (23), we get the result
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(21, (ii)).
(iii)Further, the result (21,(ii)) is second order homogeneous equation in (a,b,c)
hence applying one of the properties of second order homogeneous equation in it,
we find the result (21,(iii)). On solving above determinant given in Eqn. (21,(iii)),
we also find above consistency conditions.

Theorem 2. If the given data are consistence, then it is followed thatMα,β
4,n (x;µ(x))

> (Mα,β
2,n (x;µ(x)))2 and Mα,β

4,n (x;µ(x))Mα,β
2,n (x;µ(x)) > (Mα,β

3,n (x;µ(x)))2 and thus

∞∑
n=0

Cα,β
n (x)(Mα,β

2,n (x;µ(x)))2 < Hα,β{(y − µ(x))4}(x) (24)

∞∑
n=0

Cα,β
n (x)(Mα,β

3,n (x;µ(x)))2 < [Hα,β{(y − µ(x))2}(x)]1/2[Hα,β{(y − µ(x))4}(x)]1/2.

(25)
Proof. Use the result (Mα,β

2,n (x;µ(x)))2 < Mα,β
4,n (x;µ(x)) and multiply both of its

sides by Cα,β
n (x) and then sum them from n = 0 to n = ∞, and again using

Chauchy-Schwarz inequality of summation, we get the result (24).
Further, use the result (Mα,β

3,n (x;µ(x)))2 < Mα,β
4,n (x;µ(x))Mα,β

2,n (x;µ(x)), and ap-
ply same techniques to get the result (25).

5. Applications
In this section, we apply above results to obtain following approximations,
Let α, β be given in Eqn. (5) and a and c be arbitrary given by Eqn. (21).

Then applying Eqns. (16), (20) and (22) .we get the inequalities

2F1

[
−n, 3; 1;

x

1 + x

]
+

(
1

(α + βn)
− 1

){
2F1

[
−n, 2; 1;

x

1 + x

]}2

≥ − c
a

(α + βn− 1)(α + βn)(1 + x)n (26)

Again, let α, β be given in Eqn. (5), a and c be arbitrary given by Eqn. (21)
and λn be any bounded sequence. Then form Eqn. (26), for |t| < 1, we find the
inequality

∞∑
n=0

λn 2F1

[
−n, 3; 1;

x

1 + x

]
tn +

∞∑
n=0

λn

(
1

(α + βn)
− 1

)
{

2F1

[
−n, 2; 1;

x

1 + x

]}2

tn +
c

a

∞∑
n=0

λn(α+ βn− 1)(α+ βn){(1 + x)t}n ≥ 0. (27)
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By theory of generating functions and application of the Eqns. (26) and (27),
we can obtain various inequalities for known and less known summation formulas
involving various polynomials.
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