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Abstract: Logistic distributions have been widely applied to model data in both
pure and applied sciences. In the present paper, the probability density and cumu-
lative distribution functions of the linear combination of N independent and not
identically distributed logistic random variables have been obtained in terms of the

H-function. By means of the latter, reliability measures of the type P (
N1∑
i=1

Xi <

N2∑
j=1

Yj), when Xi, i = 1, ..., N1 and Yj, j = 1, ..., N2 are logistic random variables

have been derived. Also, a highly accurate approximated expression has been built
for the case N1 = N2 = 1 by means of curve fitting techniques, avoiding the need
for H-function calculations in this case. Numerical experiments have been carried
out, revealing that the expressions proposed correctly predicted the reliability mea-
sures considered.
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1. Introduction
Stochastic formulations are fundamental to the modeling of natural phenomena.

In the last decades, the importance of the logistic distribution has been widely rec-
ognized; placing this type of random variable among the most studied ones. Also,
not only pure, but also applied scientists have found in this distribution a very good
model for predicting their variables of interest. One of the remarkable properties of
the logistic distribution is that it closely approximates normal distributions. This
feature has been extensively used since the former is invertible, while the latter is
not. This way, consider a random variable W . Let W follow a logistic distribution
with mean µ ∈ R and scale parameter σ > 0. One says W ∼ L(µ, σ) and both
the probability density function (p.d.f) and the cumulative distribution function
(c.d.f.) of W are given by

f(x;σ, µ) =
e−(

x−µ
σ

)

σ[1 + e−(
x−µ
σ

)]2
, ∀x ∈ R, (1)

and

F (x;σ, µ) =
1

1 + e−(
x−µ
σ

)
, ∀x ∈ R, (2)

respectively.
In general, while dealing with random variables, defining algebraic operations

over them is of great interest. In special, the algebra of random variables shows
how to obtain the distributions of product, ratio, sum and difference of random
variables.

Over the last half century, due to the high applicability of the logistic distri-
bution, special attention has been given to the obtention of the distribution of the
sum of logistic random variables. Goel (1975) presented a slow-converging formula
for the cumulative distribution function of the sum of independent and identically
distributed (i.i.d) logistic random variables with mean zero and scale parameter
1. On the other hand, George and Mudholkar (1983) discussed improvements on
the expressions in (Goel, 1975) by proposing other series representations. The for-
mulation presented in (George and Mudholkar, 1983) consisted basically of triple
series, which require considerable computational effort to evaluate.

Ojo and Adeyemi (1989) obtained the distribution function of the sum of i.i.d
generalized logistic distribution in terms of infinite series. In Ojo and Adeyemi
(1989) approximations in terms of student−t distributions have also been pre-
sented, but as in the case of the expressions from (George and Mudholkar , 1983),
the computational efforts required to evaluate the formulas were enormous.
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More recently, Ojo (2002) proposed approximations to the expressions in (Ojo
and Adeyemi , 1989) by considering the mixture of normal, logistic and double
exponential distributions. Also, Ojo (2003) discusses alternative approaches to
obtain the distribution function of the sum of i.i.d generalized logistic distribution.
In (Ojo, 2003), alternative representations of the distribution function are given in
terms of derivatives and series.

Even though considerable work has been done on the subject, a closed-form
compact representation for the sum of independent not identically distributed lo-
gistic random variables has not been given. In the present paper, the linear com-
bination of logistic random variables with different means and scale parameters
is given, in a compact form, in terms of the H function. This latter function is
a generalized hypergeometric special function whose importance has been widely
recognized. In special, Springer (1979) discusses the central role of this function to
the study of the algebra of random variables.

Besides the pure statistical applications where the linear combination itself is
sought, reliability models can also be derived based on the latter.

For example, if X is the strength of the component of some system which is
subject to a stress Y , R = P (X < Y ) = P (X − Y < 0) is a measure of component
reliability. The evaluation and the estimate of R for a set of data is called in
statistical quality control of stress-strength problem. A recent review on this topic
is given in (Kotz et al., 2003). When X and Y are assumed to be independent
and identically distributed (iid) random variables, the stress-strength problem have
been extensively studied by many authors. Among the distributions considered are
normal, exponential, gamma, Weibull, Pareto, logistic and extreme value family.

In general, mathematical procedures are used to estimate R. For example, Al-
Mutairi et al. (2011) used maximum likelihood and bootstrap methods to derive
confidence intervals for R when the considered random variables are of exponen-
tial type. Recently, a new exponential-type distribution has been introduced in
(Lemonte, 2013), being estimates for the reliability measure R given when both
random variables compared belong to this new type of distribution family. Also,
Rezaei et al. (2010) and Krishnamoorthy and Lin (2010) proposed estimates for
R when both the distributions compared were generalized Pareto and Weibull,
respectively.

Regarding logistic-type distributions, Asgharzadeh et al. (2013) derived estima-
tors for R when both the distributions compared are generalized logistic. Haghighi
and Shayib (2010) studied the reliability R for independent random variables X
and Y following logistic distributions with null location parameters. One of the
purposes of this note is to examine R when both the two variables are logistics
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with non-null scale and different location parameters. An exact expression for R
is derived in terms of the H-function. Also, an approximation to R, in terms of
elementary functions, is proposed. The latter is based on curve fitting methods, as
shall be discussed later on in the present paper.

It is worth noticing that the main purpose of the present paper is to provide

exact and approximate formulas for reliability measures R = P (
N1∑
i=1

Xi <
N2∑
j=1

Yj),

when Xi, i = 1, ..., N1 and Yj, j = 1, ..., N2 are logistic random variables. Thus, this
paper is to be used as a theoretical basis for future accurate practical applications.

Since the analytical expressions are derived in terms of the H-function, in order
to familiarize the reader, a few definitions are given in the next section.

2. H-function
The H - function (see (Mathai et al., 2010) ) is defined, as a contour complex

integral which contains gamma functions in their integrands, by

Hm,n
p,q

[
z

∣∣∣∣ (a1, A), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]

=
1

2πi

∫
L

m∏
j=1

Γ(bj +Bjs)
n∏
j=1

Γ(1− aj − Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj + Ajs)

z−sds, (3)

where Aj and Bj are assumed to be positive quantities and all the aj and bj may
be complex. The contour L runs from c − i∞ to c + i∞ such that the poles of
Γ(bj + Bjs), j = 1, . . . ,m lie to the left of L and the poles of Γ(1 − aj − Ajs),
j = 1, . . . , n lie to the right of L.

The Mellin transform of the H -function is given by

∫ ∞
0

xs−1Hm,n
p,q

[
cx

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
dx =

c−s
m∏
j=1

Γ(bj +Bjs)
n∏
j=1

Γ(1− aj − Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj + Ajs)

z−s.

(4)

Given these few expressions, one shall proceed to obtain the p.d.f and c.d.f of
the linear combination of logistic random variables by means of the H-function.
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3. The Linear Combination of N Logistic Random Variables
In this section a brief description of the problem and its full solutions are dis-

cussed.

3.1 Problem Statement
Let Xi ∼ L(µi, σi). Then, one seeks the probability density function of the

random variable Z, such that:

Z =
N∑
i=1

biXi (5)

in which bi, i = 1, ..., N are real numbers.
At first, one may notice that if Xi ∼ L(µi, σi), then biXi ∼ L(biµi, σi|bi|). This

can be readily verified by noticing that:

P (biXi ≤ y) =

{
P (Xi ≤ y/bi) = F (y, biσi, biµi) bi > 0

P (Xi > y/bi) = F (y,−biσi, biµi) bi < 0
(6)

This way, by using (5) and (6), the variable Z can be rewritten as the sum of the
logistic variables Yi, Yi = biXi ∼ L(biµi, σi|bi|). In order to provide a closed form
exact representation for the probability density function of the random variable
Z, one shall first proceed to the obtention of the characteristic functions of the
random variables Yi, i = 1, ..., N .

3.2 The Characteristic Function of a Logistic Random Variable
The characteristic function of a given random variable is nothing but the Fourier

transform of its probability density function. The characteristic function of a lo-
gistic random variables is widely known in the literature. On the other hand,
for completeness of study, such characteristic function is obtained in detail in the
present paper. This way, by means of (1), the characteristic function φi(t) (CF)
for the random variables Yi, i = 1, ..., N can be given as:

φi(t) =

∞∫
−∞

ejtx
e
− (x−µibi)

σi|bi|

σi|bi|
(

1 + e
− (x−µibi)

σi|bi|

)2dx, (7)

where j =
√
−1.

By means of the variable change r = e
− (x−µibi)

σi|bi| /

(
1 + e

− (x−µibi)
σi|bi|

)
, the integral in
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(7) becomes:

φi(t) = ejtbiµi
1∫

0

r−jtσi|bi|(1− r)jtσi|bi|dr. (8)

One may consider the beta function, defined as:

B(a, b) =

1∫
0

ra−1(1− r)b−1|dr =
Γ(a)Γ(b)

Γ(a+ b)
, (9)

in which Γ(.) denotes the gamma function.
This way, (8) and (9) provide:

φi(t) = ejtbiµiB(1− jtσi|bi|, 1 + jtσi|bi|) = ejtbiµiΓ(1− jtσi|bi|)Γ(1 + jtσi|bi|). (10)

It is widely known that the characteristic function of the sum of independent
random variables is the product of the individual characteristic functions (Springer
, 1979). Thus, the CF of the random variable Z, φZ(t) , can be given as:

φZ(t) =
N∏
i=1

[
ejtbiµiΓ(1− jtσi|bi|)Γ(1 + jtσi|bi|)

]
. (11)

In order to obtain the probability density function of the random variable Z,
one shall invert the Fourier transform applied to obtain the CF. This process is
described in the next subsection.

3.3 The Probability Density Function of the Linear Combination of Lo-
gistic Random Variables

Being the CF of the random variable Z known, by means of the inversion
formula for Fourier transform, one shall get that the probability density function
of Z, fZ(x), as:

fZ(x;σ, µ, b) =
1

2π

∞∫
−∞

e
−jt

(
x−

N∑
i=1

biµi

)
N∏
i=1

[Γ(1− jtσi|bi|)Γ(1 + jtσi|bi|)] dt, (12)

where σ, µ and b represent the vectors of means, scale parameters and coefficients,
respectively.

It is possible to transform the real integral in (12) into a contour integral in the
complex plane. In order to do that, let one consider the variable change jt = s.
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This way, by means of the transformed complex integral and the definition of the
H-function in (3), (12) can be rewritten as:

fZ(x;σ, µ, b) = HN,N
N,N

[
e
x−

N∑
i=1

biµi
∣∣∣∣ (0, σ1|b1|), ..., (0, σN |bN |)

(1, σ1|b1|), ..., (1, σN |bN |)

]
. (13)

Equation (13) provides a closed form exact representation for the probability
density function of the linear combination of logistic random variables. It is worth
noticing that (13) is valid for every parameter σi > 0, µi ∈ R and bi ∈ R, i =
1, ..., N .

Since the representation is given in terms of a well-known function, it is easy
to obtain the cumulative distribution function, as shown in the next subsection.

3.4 The Cumulative Distribution Function of the Linear Combination of
Logistic Random Variables

By definition, the cumulative distribution function of the random variable Z,
FZ , whose p.d.f. is given in (13), is obtained as:

FZ(x;σ, µ, b) =

x∫
−∞

HN,N
N,N

[
e
x−

N∑
i=1

biµi
∣∣∣∣ (0, σ1|b1|), ..., (0, σN |bN |)

(1, σ1|b1|), ..., (1, σN |bN |)

]
dx. (14)

By considering the definition in (3), a well-known property of the H function pro-
vides (Mathai et al., 2010):

FZ(x;σ, µ, b) = HN,N+1
N+1,N+1

[
e
x−

N∑
i=1

biµi
∣∣∣∣ (0, σ1|b1|), ..., (0, σN |bN |), (1, 1)

(1, σ1|b1|), ..., (1, σN |bN |), (0, 1)

]
. (15)

It is worth noticing that as (13), (15) is valid for every set of parameters.
Being the general analytical representation for the p.d.f. and c.d.f. of the linear
combination of logistic random variables given, one shall proceed to obtain the
reliability analysis enabled by the latter.

4. Reliability P (X < Y )
As discussed in the Introduction, the reliability measure R = P (X < Y ) =

P (X − Y < 0) is of great interest to both pure and applied scientists. It can be
seen that by means of (15), R is easily given by considering the difference of two
Logistic random variables.

In the present section, the exact value of R is provided in terms of the H-
function, as shall be seen subsequently. Also, an approximation is built based
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on curve fitting methods in order to facilitate the usage of the formulas hereby
developed.

4.1 Exact Expression
Let X ∼ L(µ1, σ1) and Y ∼ L(µ2, σ2). Then, by means of (15), R = P (X <

Y ) = P (X − Y < 0) can be exactly given as:

R = H2,3
3,3

[
eµ2−µ1

∣∣∣∣ (0, σ1), (0, σ2), (1, 1)
(1, σ1), (1, σ2), (0, 1)

]
. (16)

Even though R is exactly expressed in (16), a mathematical software such as
Mathematica must be available for its evaluation. In fact, a Mathematica routine
is used to evaluate the H-function, as shown subsequently in the applications sec-
tion. On the other hand, when out-of-computer quick calculations are needed, a
simpler expression in terms of elementary functions is of great interest. In the next
subsection, a highly accurate approximation is derived for R.

4.2 Approximated Expression
Curve fitting methods have shown to be important tools to applied scientists.

In the present subsection, an approximation to (16) is derived.
The first step in a curve fitting procedure is to consider the number of variables

on which the fitted function will depend. In our case, the fitted function is R and,
in a first look to (16), the H-function depends on three variables v: v1 = µ2 − µ2,
v2 = σ1 and v3 = σ2. This number can be reduced to 2 by means of the following
property of the H-function (Mathai et al., 2010):

Hm,n
p,q

[
z| (ap, Ap)

(bq, Bq)

]
= kHm,n

p,q

[
zk| (ap, kAp)

(bq, kBq)

]
, k > 0. (17)

Thus, by means of (16) and (17), R can be given as:

R =
1

σ1
H2,3

3,3

[
e
µ2−µ1
σ1

∣∣∣∣ (0, σ2
σ1

), (0, 1), (1, 1
σ1

)

(1, σ2
σ1

), (1, 1), (0, 1
σ1

)

]
. (18)

Equation (18) may be further simplified by looking at its integral representation
given in (3). Thus, (18) may be rewritten as:

R = H2,3
3,3

[
e
µ2−µ1
σ1

∣∣∣∣ (0, σ2
σ1

), (0, 1), (1, 1)

(1, σ2
σ1

), (1, 1), (0, 1)

]
. (19)

By looking at (19), the H-function now only depends on two variables v: v1 =

e
µ1−µ2
σ1 and v2 = σ2

σ1
. It is now of interest to study the range of variation of the

variables v1 and v2.
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The variable v1 satisfies the inequalities:

0 < v1 ≤ 1, for µ1 ≤ µ2

and
v1 > 1, for µ1 > µ2

(20)

In a curve fitting procedure, it is interesting to sample the variables in their
whole domain. In the case under consideration, both v1 and v2 can be positive real
numbers, thus it is impossible to have a good density of sampling points. This can
be overcome by considering only the case in which µ1 ≤ µ2 because the complement
can be given by using the relation P (X < Y ) = 1 − P (Y < X). In other words,
the expression to be derived is fitted for the case where µ1 ≤ µ2, such that when
the opposite occurs, the fitted formula will still apply to evaluate P (Y < X), and
so P (X < Y ) by the relation above described.

By the considerations above, the range of the variables to be considered in the
curve fitting are 0 ≤ v1 ≤ 1 and 0 ≤ v2 <∞.

The approximating function whose coefficients d and r are to be determined is:

(1− d)

(
1− 2d

2− 2d

)vr1
+ d (21)

in which 0 < d < 1/2 and r > 0 are both functions of v2.
It is interesting to notice that (21) obeys the conditions:

• When µ1 = µ2, v1 = 1 and R = 1/2;

• When µ2 >>> µ1, v1 = 0 and R = 1.

In order to obtain the fitted function, the following procedure has been carried
out:

• At first, a value w, 0 < w < 10 has been sampled. By taking v2 = w, the
H-function in (18) has been sampled for v1 = 0.01k, k = 0, ..., 100;

• For each set of data obtained from the last step, the nonlinear fit tool of the
software Mathematica has been used to determine the best parameters d and
r according to (21);

• The procedure of the last two steps has been repeated 100 times, obtaining
the values of v2 and the corresponding values of d and r;
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• The behavior of both d and r has been studied and they were fitted as other
functions of v2.

By following the procedure above, d and r are given as:

d(v2) = 0.208 + 0.757e
− 2.020

0.670+v2 (0.670 + v2)
−3/2, (22)

and
r(v2) = 0.023 + 2.410e

− 1.044
0.591+v2 (0.591 + v2)

−3/2. (23)

This way, the approximation to R is given by means of (22) and (23) as:

R =

{
(1− d)

(
1−2d
2−2d

)vr1 + d, v1 = e
µ1−µ2
σ1 , v2 = σ2

σ1
; µ1 ≤ µ2

1− d− (1− d)
(
1−2d
2−2d

)vr1 , v1 = e
µ2−µ1
σ2 , v2 = σ1

σ2
; µ1 > µ2

. (24)

The maximum absolute error between (16) and (24) is less than 0.008 within
the fitting interval, indicating a very accurate approximation.

In the next section a few numerical applications of the results hereby obtained
are shown.

5. Numerical Applications of the Results: Reliability of Logistic Distri-
butions

In this section, the formulas developed in the present paper are numerically
evaluated in order to show their applicability.

5.1 Reliability of the type R = P (X < Y )
When only two logistic distributions are considered, the present paper provides

both the exact and approximated formulas for evaluating the reliability measure
R. In order to show the applicability of (16) and (24), a set of logistic random
variables is shown in Table 1 and graphically in Figure 1. It is worth noticing that
the representations which involve the H-function have been numerically evaluated
by means of a computational code in Mathematica.

Table 1: Logistic Random Variables Considered R = P (X < Y )

Random Variable µ σ
X1 -1.5 2
X2 -2.5 3.25
X3 1.75 2.75
X4 3.25 1.25
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Figure 1: Probability Density Functions of the Random Variables from Table 1 (X1 full,
X2 dotted, X3 dashed and X4 dot-dashed).

By means of the logistic distributions considered in Table 1, the reliability
measures in Table 2 can be obtained:

Table 2: Reliability Measures R = P (X < Y )

Reliability From From Estimated From Variance of
Measure (16) (24) Random Data Estimator

P (X1 < X2) 0.43793 0.43984 0.43790 2.5126× 10−6

P (X2 < X3) 0.72093 0.72045 0.72090 1.9199× 10−6

P (X3 < X4) 0.61753 0.61646 0.61757 2.3772× 10−6

The values of R estimated from data have been obtained by following the pro-
cedure below:

• Generate random samples with 105 elements each for the random variables
X and Y ;

• Let xi and yi, i = 1, ..., 105, denote the elements of the random samples of
the random variables X and Y , respectively. Consider the indicator function
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I(x, y) = 1− u(x− y), where u(x) = 0, x < 0 and u(x) = 1, otherwise. The

value of R can be estimated as Re =
105∑
i=1

I(xi, yi);

• Repeat the above process 1000 times and then take the mean value of the Res
generated. This value is shown in Table 2. The variance of the Res generated
is also shown in Table 2.

5.1.1 Previous Results
Haghighi and Shayib (2010) studied the reliability R for independent random

variables X and Y following logistic distributions with null location parameters.
The authors presented a series expression for R dependent on the scale parameters
of both distributions being compared.

Fundamentally the result in (Haghighi and Shayib (2010)) is wrong as R = 1/2
whenever the distributions being compared are of the same type, symmetrical and
with same mean value. In the present paper, the correct results are obtained.

5.2 Reliability of the type R = P (X + Y < Z +W )
In the case in which the sum of two logistic random variables is compared to

another sum of different logistic random variables, the reliability measure R =
P (X+Y < Z+W ) can be easily obtained from (15). A few numerical simulations
with the random variables from Table 1 are shown in Table 3.

Table 3: Reliability Measures R = P (X + Y < Z +W )

Reliability From Estimated From Variance of
Measure (15) Random Data Estimator

P (X1 +X2 < X3 +X4) 0.85304 0.85300 1.3229× 10−6

P (X1 +X3 < X2 +X4) 0.52364 0.52369 2.4787× 10−6

P (X1 +X4 < X2 +X3) 0.38357 0.38359 2.3592× 10−6

The estimated values in Table 3 are evaluated similarly to the ones of Table
2. The only difference is that before applying the indicator function, the random
samples of the variables X and Y are element-wise summed up. The same is done
to the random samples of the variables Z and W .

Table 3 reveals a very good accordance between the H-function value of the
reliability measure and the estimated value, which corroborates to the validity of
the equations hereby proposed.
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5.3 Reliability of the type R = P (X + Y + Z < W + P +Q)
Finally, when the sum of three logistic random variables is to be compared to

the sum of different three logistic random variables, the result (15) easily provides
the exact values of the reliability measures involved.

Table 4 presents a few numerical simulations by considering the random vari-
ables from Table 1.

Table 4: Reliability Measures R = P (X + Y + Z < W + P +Q)

Reliability From Estimated Variance of
Measure (15) From Estimator

Rnd. Data
P (X1 +X2 +X3 < X1 +X2 +X4) 0.55482 0.55483 2.3285× 10−6

P (X1 +X2 +X4 < X2 +X3 +X4) 0.62655 0.62145 2.2754× 10−6

P (X1 +X3 +X4 < X1 +X2 +X3) 0.29170 0.29174 2.1564× 10−6

As in the case of the previous subsection, Table 4 shows that the results are
well predicted by the analytical formulas hereby developed.

The estimated values were obtained by a similar procedure as the one considered
to build Table 3. The difference is that in the former, each set of three random
samples has been summed up element-wise before applying the indicator function.

6. Conclusions
Logistic random variables have shown to be a simple yet powerful model for

variables concerning both pure and applied scientists. In general, while dealing
with random variables, obtaining the distribution of the linear combination of the
latter is of interest.

In the present paper, the probability density function and the cumulative dis-
tribution function of the linear combination of N independent and not identi-
cally distributed logistic random variables has been obtained in terms of the H-
function. These expressions have been used to derive reliability measures of the

type P (
N1∑
i=1

Xi <
N2∑
j=1

Yj) when Xi, i = 1, ..., N1 and Yj, j = 1, ..., N2 are logistic

random variables. A highly accurate approximate expression has been built for the
case N1 = N2 = 1 by means of curve fitting techniques.

The applicability of the expressions developed has been verified by numerical
experiments, revealing a very good accordance between the exact and the estimated
reliability measures.
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