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1. Introduction and Definition
The well known Mittag-Leffler function is defined as follows (see, [4]):
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where o € C, R(a) > 0,z € C and its general form is given by
E, 4(2) = S 1.2
22 = 2 TG an) (12)
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where o, 5 € C,R(a) > 0,R(B) > 0,z € C with C being the set of complex
numbers which is known as Wiman function [10].
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In 1971, Prabhakar [5] introduced the function E] 4(2) as follows:
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where o, 5,7 € C, R(a) > 0,R(5) > 0,R(y) >0,z € C and (7),, is the well known
Pochhammer symbol [6].

In continuation of his work, Shukla and Prajapati [8] introduced the following
extension of Mittag-Leffler function:
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where o, 5,7 € C;, R(a) > 0,R(3) > 0,R(y) >0and g € (0,1)|JN.

The function £%(z) is most natural generalization of the exponential function
exp(z), Mlttag—Lefﬂer function E,(z) and Wiman function E, g(z). Furthermore,
the function E]%(2) has the following special cases (see, [3]):

E)5(2) = E) 4(2), Eyy(2) = Eap(2), Eax(2) = Ea(2),
er —1

ELQ(Z) =

The generalization of the generalized hypergeometric series ,F; is due to Fox
[2] and Wright ([11], [12], [13]) who studied the asymptotic expansion of the gen-
eralized (Wright) hypergeometric function defined by (see [9, p.21]; see also [7]):

,Ellll(z) = E11(2) = Ei(2) = exp(z), z € C. (1.5)
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where the coefficients Ay, -+, A, and By,---, B, are positive real numbers such
that
q p
() 1+> B;j=> A;>0and 0< 2] < o0; 2 #0. (1.6a)
: e

(i) 1 —i—ZB ZAj =0and 0 < |z| < A M. A, B/P .. B (1.6b)

7=1
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A special case of (1.6) is
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where (\),, is the Pochhammer’s symbol [6].

2. Useful Result

For our present investigation, the following interesting and useful result due
to Edward [1, p.445] will be required:

1,1 . . B . - r
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provided £(a) > 0 and R(3) > 0.
3. Main Result

We establish here the following double integral involving Mittag-Lefller func-
tion E';, which is expressed in terms of Wright hypergeometric function:

J R e e e e R
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where a is nonzero constant, ®(a) > 0, R(3) > 0, R(v) >0, R(A) >0, R(un) > 0,
E; and 3W, are the Mittag-Leffler and Wright hypergeometric functions defined
by (1.4) and (1.5), respectively.
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Proof : To establish our main result (3.1), we denote the left-hand side of (3.1)
by I and then using (1.4), we have

1,1 o {(11$—)()12?J)}n
I = AM1—=x) 1—y) ' (1 —zy) o dx dy.
A!AZ/( " (1-y) y)' }: Tlont 9 nl Y

(3.2)
Now changing the order of integration and summation, which is clearly seen to be
justified due to the uniform convergence of the series in the interval (0,1), we arrive
at
1 i F(y+vn) (A +n) D(p+n) (a)”
C(v) I'(an+ 5) I'(A+ p + 2n) n!

Finally, summing up the above series with the help of (1.5), we easily arrive at the
right-hand side of (3.1). This completes the proof of our main result.

I =

(3.3)

n=

Next, we consider other variation of (3.1). In fact, we establish an integral
formula for the Mittag-Leffler function E7;, which is expressed in terms of the
generalized hypergeometric function ,Fy,.

4. Variation of (3.1): Let the conditions of our main result be satisfied, then
the following integral formula holds true:

Lt _ _ o s lay(l —2)(1 —y
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where A(m; [) abbreviates the array of m parameters + o ljnl, cee HmT—l , m> 1.

Proof: In order to prove the result (4.1), using the results

D(a +n) = D()(@),

s (1) () (45),

(Gauss multiplication theorem) in (3.3) and summing up the given series with the
help of (1.8), we easily arrive at our required result (4.1).

and
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5. Special Cases :
(i). On taking v = 1 in (3.1) and by using £_3(2) = E] 5(2), we get
. 1-2)(1-y)
Lyt (1) | dr d
[ [ amar= amgpt ey gy, [2EE 000 g,
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where $t(a) > 0,R(5) > 0,R(v) > 0,R(x) > 0,R(A) > 0 and E] ; is the Mittag-
Leffler function defined by (1.3).

(ii). On setting v = 1 in (5.1) and by using E], 5(2) = E,3(2), we get

// (1—2) (1=g)" ' (1—zy) “Eag[ay(l_@(l;y)} d dy

(1 —ay)
[(L1% (N SR (VA DI ]
= 30 a |, (5.2)
(B, a), (A+p 2) ;

where () > 0, R(8) > 0,R(y) > 0,R(p) > 0,R(N\) > 0 and E, g is the Mittag-
Leffler function defined by (1.2).

(iii). On putting f = 1in (5.2) and by using E,1(z) = E,(2), we get
>\1 u—1 B ay(l —z)(1 —y) "
[ oo e 2520
[ (1, 1), (A 1), (1, 1)
3Ws
(

L, o), (Atp, 2) ;

where R(a) > 0, R(p) > 0,R(\) > 0 and E, is the Mittag-Leffler function defined
by (1.1).

(iv). On taking o = 1in (5.3) and by using E(z) = exp(z), we get

/01 /01 gt (L=a) T (1=g)" T (L—ay) T exp {ay(l o y)} o

(1 —my)

: (5:3)
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[ A1, (1) ]
= oI al, (5.4)
(

A, 2) ;
where R(v) > 0, R(n) > 0, R(A) >0

v). On setting a =1, = 2in (5.2) and by using F(z) = =L, we get
(v) g y using E, ; g
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where R(u) > 0,R(\) >0

(vi). On taking v = 1 in (4.1), we get

/ / 1 y)u 1 (1 :vy)l A—p Elg |:ay<1(1__l’l<yl)2— y):| dr dy
T T ) Moo e
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where R(a) > 0, R(5) > 0,R(v) > 0, R() > 0,R(A) >0

(vii). On putting v = 1in (5.6), we get

/ / (1—2)* ! (1=y)" L (1—ay) " Eup ay(l(l—_x)x(yl); y)] dx dy

1 A O

Ala; B), A2 A+ p);
where R(a) > 0, R(5) > 0, R(p) > 0,R(A) >0

(viii). Further, on setting = 1 in (5.7), we get

U—xw
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where $(a) > 0, R(p) > 0,R(A) >0

(ix). On taking « =1 in (5.8), we get

/ / (1= (1 =yt (1 —ay)* exp ay(1 = 2)(1 ~y) dx dy

(1 —zy)?
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where R(p) > 0,%(A) >0
(x). On putting « =1, f§ =2in (5.7), we get
1—2)(1—
/ / e (= R L
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THm 0| A2 A+ p); y
where R(p) > 0,R(A) >0
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