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Abstract: In the present paper we consider a unified integral transform “Ultra
Gamma Transform” (UGT) and its relation with fractional integral operators. We
list out certain properties of this transform and present a table of UGT of elemen-
tary functions including trigonometric function as well as hyperbolic function in
terms of generalized three parameter gamma function renamed as “Ultra Gamma
Function” (UGF). We also point out certain special cases of this integral transform
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point of view.
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1. Introduction

The classical gamma function is the key function in the development of spe-
cial functions of importance in various Scientific and Engineering problems (See
Erdélyi [7]). Kobayashi [13] formally defined the generalization of classical gamma
function, which appears in the Weiner-Hopf technique (See Noble [18]) of dealing
with the problem of wave scattering. Kobayashi’s generalized function involves
two parameters and readily yields the classical gamma function as a special case.
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Motivated by the work of Kobayashi; Banerji and Sinha [5] considered a three pa-
rameter generalization of Kobayashi’s gamma function and studied its asymptotic
and characteristic properties. Wonju [30] studied the theory of diffraction where
he emphasized on analytical treatment of Kobayashi’s generalized gamma function
and gives the exact evaluations of the same. The study of such functions have
attracted many mathematicians who have generalized and studied this function.
To name we include Al-Musallam and Kalla [1], [2], Galué et al. [8], Saxena and
Kalla [22], Srivastava et al. [23] and Virchenko et al. [24]. Many authors, such
as Al-Zamel [3], Ali et al. [4], Kalla and Saqabi [10], Kalla et al. [11] have con-
sidered the statistical applications of generalized gamma-type function. El-Fateh
et al. [6] have provided the practical applications of modified gamma function in
mathematical modeling of inventory control problems.

The aim of this paper is to introduce and study a unified integral transform
(UGT) consisting of three parameters and prepare a table of this transform of
well known elementary functions in terms of the ultra gamma function (UGF).
Paper is organized in five sections. In section 1 we provide the interpretation of
UGF Γλ(u, v, s), earlier considered by Banerji and Sinha [5], in terms of Fox’s H-
function and some important properties of it. Section 2 deals with ultra gamma
transform, the theorem of existence, relation with classical integral transforms and
its properties. Section 3 exhibits the relation of UGT with Weyl’s fractional in-
tegral operator and representation of UGF as a fractional integral of product of
elementary functions. The solution of integral equation describing the Wiener-Hopf
technique is presented using Weyl fractional integral operator. Section 4 is devoted
to the evaluations of UGT of certain elementary functions, trigonometric functions,
hyperbolic functions and the combinations thereof. The concluding section embod-
ies the probability density associated with UGF and its useful statistical affiliations
such as moments, moment generating function, cumulative density, hazard func-
tion, survivor function and the mean residue life function, which find applications
in vital statistics or demography. Extensive bibliography provides the collection of
study of gamma-type functions and their generalizations at a glance. Appendix,
at the end, embodies the definition of Fox’s H-function and its properties that are
used in the findings of this paper. It also contains the glimpses of integral equa-
tion and its solution in terms of Kobayashi’s generalized gamma function, which
describes the process of Weiner-Hopf technique.

1.1 Ultra Gamma Function (UGF)

Let λ be a positive integer, <(u) > 0,<(s) > 0, |v| > 0, |argv| < π and tu−1 be
interpreted as a principal value. Then three parameter generalized gamma function
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renamed as ultra gamma function, earlier considered by Banerji and Sinha [5], is
defined by

Γλ(u, v, s) =

∫ ∞
0

tu−1e−st

(t+ v)λ
dt, (1)

which has the convergence under the conditions stated herewith. Banerji and Sinha
[5] further provided the analysis of generalized psi-function denoted by ψλ(u, v, s),
incomplete generalized gamma function denoted by Γλ(u, v, s, w) and the partial
differential coefficients of UGF with respect to the parameters involved.

1.1.1 Interpretation of UGF in terms of Fox’s H-Fnction

The UGF defined in equation (1), with a couple of mathematical manipulations,
can be represented in terms of Fox’s H-function. A detailed account of H-function
is available in Mathai and Saxena [14]. Following theorem establishes the relation
of UGF with H-function:
Theorem 1: Let the conditions stated with the definition of UGF be satisfied. Then
the UGF possesses following H-function representations:

Γλ(u, v, s) =
sλ−1

Γ(λ)
H1,2

1,1

[
(u, 1), (λ, 1)
(u+ λ− 1)

∣∣∣∣∣ 1

sv

]
, (2)

which can also be expressed as

Γλ(u, v, s) =
sλ−1

Γ(λ)
H2,1

1,1

[
(2− u− λ, 1)

(1− u, 1), (1− λ, 1)

∣∣∣∣∣sv
]
. (3)

Proof: Rewrite the equation (1) as follows:

Γλ(u, v, s) =

∫ ∞
0

tu−1e−st(t+ v)−λ dt, (4)

the right hand side of which can further be expressed as

= v−λ
∫ ∞
0

tu−1e−st
[
1 +

t

v

]−λ
dt.

Invoking the H-function representation of a binomial series [See Mathai and Saxena
[14], p. 10; eq. (1.7.3)], we obtain

=
v−λ

Γ(λ)

∫ ∞
0

tu−1e−st H1,1
1,1

[
(1− λ, 1)

(1, 1)

∣∣∣∣∣ tv
]
dt.
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Using the property of H-function [See Mathai and Saxena [14], p.4, eq. (1.2.4) also
provided in the appendix at the end of this paper], we have

=
v−λ

Γ(λ)

∫ ∞
0

e−st H1,1
1,1

[
(u− λ, 1)
(u− 1, 1)

∣∣∣∣∣ tv
]
dt.

Owing to the definition of Laplace transform of H-function, we finally obtain

=
v−λ

sΓ(λ)
H1,2

1,1

[
(u− λ, 1), (0, 1)

(u− 1, 1)

∣∣∣∣∣ 1

sv

]
,

which completes the proof of the theorem with the aid of property of H-function
(Mathai and Saxena [14], p.4, equation (1.2.4)). The use of Mathai and Saxena
[14], p.4, equation (1.2.2), the alternative representation given in (3) is justified.
Note: Taking s = 1 and λ = m in the results of this theorem, Kobayashi’s gener-
alized gamma function can be interpreted in terms of Fox’s H-function as a special
case.

Γm(u, v, 1) = Γm(u, v) =
1

Γ(m)
H1,2

1,1

[
(u, 1), (m, 1)

(u+m− 1, 1)

∣∣∣∣∣1v
]

=
1

Γ(m)
H2,1

1,1

[
(2− u−m, 1)

(1− u, 1), (1−m, 1)

∣∣∣∣∣v
]

1.1.2 Asymptotic Property of UGF

Asymptotic expansions are helpful in determining the nature of functions for
higher values of the variable for which they are defined. We reproduce the impor-
tant asymptotic property of UGF given by equation (1) (See Banerji and Sinha
[5]), which is otherwise very important from the point of view of existence of this
transform. The UGF Γλ(u, v, s) has an asymptotic expansion of the form

Γλ(u, v, s) ∼
∞∑
n=0

C(−λ, n)
Γ(u+ n)

vn+λsu+n
, (5)

uniformly in generalized sense in argv as v → ∞ and s → ∞ for a well defined
domain of v and s. Also, C(a, b) stands for binomial coefficients.
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1.1.3 Recurrence Relations of UGF

It is justified to reproduce the recurrence relations due to Banerji and Sinha
[5], which will be helpful in the further findings of this paper.

Γλ(u+m, v, s) =
u+m− 1

s
Γλ(u+m− 1, v, s)− λ

s
Γλ+1(u+m, v, s); (6)

Γλ+r(u, v, s) =
u− 1

λ+ r − 1
Γλ+r−1(u− 1, v, s)− s

λ+ r − 1
Γλ+r−1(u, v, s); (7)

Γλ+m(u+m, v, s) =
u+m− 1

λ+m− 1
Γλ+m−1(u+m− 1, v, s)

− s

λ+m− 1
Γλ+m−1(u+m, v, s). (8)

1.2 Particular Cases of UGF

It is worth noting the particular cases of ultra gamma function defined in equa-
tion (1) as follows:
For λ = m and s = 1, the gamma function due to Kobayashi is expressed as

Γm(u, v, 1) = Γm(u, v) =

∫ ∞
0

tu−1e−t

(t+ v)m
dt, (9)

which has great importance in the theory of diffraction related to Weiner-Hopf
method of evaluation; because the process of evaluation can explicitly be de-
scribed by using (9). The generalized gamma function occurs in the form Γ1(n +
1/2,−2i(κ+ λ)), where n is a non-negative integer as can be seen in the following
explicit representation of the solution of integral equation describing the Wiener-
Hopf technique:

Ψ1,2
+ (λ) = ∓

N∑
n=0

(
i

2

)n
dnΨ1,2

+ (κ)

n! dλn

√
2π−1(κ+ λ)×

ei(2κ−π/4)Γ1(n+ 1/2,−2i(κ+ λ)) + S1,2(λ) (10)

where the symbols have usual meanings and S1,2(λ) contains a combination of well-
known Fresnel integrals (See Wonju [30]).
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Further, for λ = 0, s = 1, it reduces to classical gamma function widely used in the
development of special functions.

Γ0(u, v, 1) = Γ(u) =

∫ ∞
0

tu−1e−t dt, (11)

where v has no impact on this reduction formula.

2. Unified Integral Transform (Ultra Gamma Transform)

Definition 1: Let f(t), t > 0 be a bounded measurable function in the interval
(0,∞) and locally integrable in Riemann sense. Also, λ be a positive integer,
<(u) > 0,<(s) > 0, |v| > 0, |argv| < π and tu−1 be interpreted as a principal value.
Then we consider following unified integral transform hereinafter termed as Ultra
Gamma Transform (UGT):

=u,vs,λ[f(t)] =

∫ ∞
0

tu−1e−st

(t+ v)λ
f(t) dt (12)

Definition 2: If one of the parameters in (12) tends to unity, i.e., s → 1, then the
UGT gives rise to an integral transform involving the integrand of (9) as kernel,
which is directly responsible for the involvement of Kobayashi’s generalized gamma
function in further analysis along with the conditions of validity. The integral
transform is denoted by Du,vλ [f(t)] and is expressed as follows:

=u,v1,λ[f(t)] = Du,vλ [f(t)] =

∫ ∞
0

tu−1e−t

(t+ v)λ
f(t) dt (13)

The properties and results obtained for UGT, defined in (12), in the subsequent
sections of present paper shall be vis-á-vis applicable for Du,vλ [f(t)] also.

2.1 Existence Theorem

Theorem 2: Let |f(t)| < M , for M > 0, be a bounded measurable function in the
interval (0,∞) and locally integrable in Riemann sense. Also, λ be a positive inte-
ger, <(u) > 0,<(s) > 0, |v| > 0, |argv| < π and tu−1 be interpreted as a principal
value. Then the UGT defined in equation (12) exists for t > 0.
Proof: In view of the conditions stated with the theorem and the asymptotic ex-
pansion of the UGF given in equation (5), the existence of UGT is justified and
hence details are omitted.

2.2 Relation with other Integral Transforms

Specializing the parameters involved in the definition of unified integral trans-
form defined in equation (12), we list out its relation with classical integral trans-
forms and some other integral transforms as given hereunder:
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Table 1: Special Cases of Ultra Gamma Transforms

(i) =1,v
s,0 [f(t)] L[f(t)] =

∫∞
0
e−st f(t) dt Laplace Transform

(ii) =u,v0,0 [f(t)] M[f(t)] =
∫∞
0
tu−1 f(t) dt Mellin Transform

(iii) =1,v
0,1[f(t)] S[f(t)] =

∫∞
0

f(t)
(t+v)

dt Stieltjes Transform

(iv) =1,v
0,λ[f(t)] Sgen[f(t)] =

∫∞
0

f(t)
(t+v)λ

dt Generalized Stieltjes
Transform

(v) =u,vs,0 [f(t)] L −M[f(t)] =
∫∞
0
tu−1 e−st f(t) dt Mellin-Laplace Trans-

form

(vi) =1,v
s,1 [f(t)] L − S[f(t)] =

∫∞
0

e−st

(t+v)
f(t) dt Laplace-Stieltjes

Transform

(vii) =0,v
0,1[f(t)] M−S[f(t)] =

∫∞
0

tu−1

(t+v)
f(t) dt Mellin-Stieltjes Trans-

form

2.3 Properties of Ultra Gamma Transform

Some standard properties of ultra gamma transform, which all the classical
transform possess, are enumerated here as a part of analysis:

2.3.1 Shifting/Translation Properties

The ultra gamma transform possesses three important shifting properties with
respect to exponential function, power function and the binomial function respec-
tively. The properties are as follows:

1. For a > 0, the first shifting property with respect to exponential function
resulting in to shift in one of the parameters s is given by

=u,vs,λ[eatf(t)] = =u,vs−a,λ[f(t)]; (14)

2. For b > 0 and tb being principal, the second shifting property with respect to
power function resulting in to shift in another parameters u is given by

=u,vs,λ[tbf(t)] = =u+b,vs,λ [f(t)]; (15)

3. For t 6= −d,m ∈ N , the third shifting property with respect to binomial
function resulting in to shift in u is expressed in terms of a finite series of
shifted parameter ultra gamma transforms.

=u,vs,λ[(t+ d)mf(t)] =
m∑
n=0

C(m,n) dm−n =u+n,vs,λ [f(t)]; (16)

where C(m,n) stands for usual binomial coefficients.
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4. The property 1 and property 2 given above, when combined, give rise to a
joint shifting property defined by

=u,vs,λ[eat tbf(t)] = =u+b,vs−a,λ[f(t)]. (17)

This property may also be named as 2-D translation property with the fact
that it translates one of the parameters in positive and the other in negative
direction.

The proofs of all the four properties enumerated above are simple hence omitted.

2.3.2 Linearity Properties

If f(t) and g(t) be two locally integrable functions and a and b are two arbitrary
numbers real or complex, then the ultra gamma transform possesses usual linearity
property

=u,vs,λ[a f(t)± b g(t)] = a =u,vs,λ[f(t)]± b =u,vs,λ[g(t)], (18)

which, for a finite sequence of functions 〈fn(t)〉 and the finite sequence of real or
complex numbers 〈cn〉, can be further represented in more general form

=u,vs,λ[c1f1(t)± · · · ± cnfn(t)] = c1 =u,vs,λ[f1(t)]± · · · ± cn=u,vs,λ[fn(t)]. (19)

2.3.3 Dual Scaling Property

Let c > 1 be a real number and f(ct) sustains the integrability over the entire
positive real line in Riemann sense. Then the property down-scales the parameter
s and up-scales the parameter v and for 0 < c < 1, the scaling is reversed between
these parameters. Thus the name dual scaling property is justified. The property
is read as follows:

=u,vs,λ[f(ct)] =
1

cu−λ
=u,cvs

c
,λ [f(t)]. (20)

This special dual scaling property of integral transform so defined makes its name
“Ultra Gamma Transform” justified.

3. Relation with Fractional Integral Operator

Fractional calculus is the generalization of ordinary n-times iterated integrals
and nth derivatives of continuous functions to that of any arbitrary order real or
complex. The most commonly used definition of fractional integral operators of
order α is due to Riemann-Liouville. A detailed account of fractional calculus is
given in Samko et al. [21] and the applications of it are elaborated in Podlubney [19]
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and Hilfer [9]. Vyas [26], Vyas and Banerji ([27], [28]) and Vyas, Banerji and Saigo
[29] have contributed to the application of fractional calculus in the evaluation of
Dirichlet averages. Vyas [25] interpreted the angle of collision occurring in the
study of transport properties of Noble gases at low density configuration using
fractional integral operators of order 1

2
, i.e., semi-integrals. A detailed account

of applications of semi-derivatives and semi-integrals to the problems of Electrical
Engineering is given in McBride and Roach [15].
The operators of fractional integration of order α, <(α) > 0 due to Riemann-
Liouville and that of Weyl are respectively expressed as

0D
−α
x [f(t)] = Rα

0,x[f(t)] =
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt, (21)

Wα
x,∞[f(t)] =

1

Γ(α)

∫ ∞
x

(t− x)α−1f(t) dt, (22)

and have tremendous applications in the solutions of fractional differential equa-
tions of Physics and Engineering.

Theorem 3: Let the UGT be defined by equation (12) under specified convergence
conditions and Wα

x,∞[f(t)], <(α) > 0 denotes the Weyl fractional integral operator
of order α. Then the UGT can be represented in the following form

=u,vs,λ[f(t)] = esv Γ(u) W u
v,∞
[
e−sωω−λ f(ω − v)

]
, (23)

where Γ(u) is the classical gamma function.
Proof: Making the linear substitution t + v = ω so that the limits of integration
change from (0,∞) to (v,∞), we write

=u,vs,λ[f(t)] =

∫ ∞
v

(ω − v)u−1e−s(ω−v)

ωλ
f(ω − v) dω.

Rearranging the terms within the integral and invoking the definition of Weyl’s
fractional operator (22) we arrive at the desired result.

Corollary 1: Fractional integral representations of UGT and its particular cases
suggest that the UGF and its particular cases can also be represented in terms of
Weyl fractional integral. The UGF possesses following fractional integral represen-
tation. If we consider the function f(t) to be unity, then the transform yields the
UGF. Owing to the contents of theorem 3, the fractional integral representation of
UGF is obtained in the following fashion

=u,vs,λ[1] = Γλ(u, v, s) = esv Γ(u) W u
v,∞
[
e−sωω−λ

]
, (24)
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which, for s = 1 & λ = m, further gives rise to fractional integral representation
of Kobayashi’s gamma function as a special case.

Γm(u, v, 1) = Γm(u, v) = ev Γ(u) W u
v,∞
[
e−ωω−m

]
. (25)

Corollary 2: Using the fractional integral form of Kobayashi’s generalized gamma
function (25) for u = n + 1

2
, v = −2i(κ + λ) & m = 1, the solution of inte-

gral equation appearing in Wiener-Hopf method for finite differaction may also be
represented as

Ψ1,2
+ (λ) = ∓

N∑
n=0

(
i

2

)n
dnΨ1,2

+ (κ)

n! dλn

√
2

π
(κ+ λ)e−i(2λ−π/4)×

Γ

(
n+

1

2

)
W

n+ 1
2

−2i(κ+λ),∞
[
e−ωω−1

]
+ S1,2(λ), (26)

which indicates that the Weyl fractional integral finds an important role in de-
scribing the process of solution of such integral equation over a complex domain.
A detailed account of fractional calculus on complex domain including equivalences
is available in research monographs of Nishimoto [17].

4. Table of Ultra Gamma Transforms =u,vs,λ[f(t)]

A typical property of UGT is that any input function maps to ultra gamma
function Γλ(u, v, s) whose characteristic and asymptotic properties are addressed in
Banerji and Sinha [5]. Also, the two parameter gamma function due to Kobayashi
[13] follows as a particular case of three parameter gamma function, it is quite le-
gitimate to discover the results involving integral transforms of functions in terms
of Kobayashi’s function Γλ(u, v).
Present section deals with the ultra gamma transform of certain elementary func-
tions in terms of ultra gamma function defined in the preceding sections. Following
table lists the UGT of elementary functions tn, eat by direct evaluations and that
of trigonometric functions, hyperbolic functions and the combinations thereof by
using the properties of UGT in terms of UGF:
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Table 2: Ultra Gamma Transforms in terms of Ultra Gamma Function

f(t) =u,v
s,λ [f(t)]

1 Γλ(u, v, s)

t Γλ(u+ 1, v, s) = Γ
′

λ(u, v, s)

tn Γλ(u+ n, v, s) = Γ
(n)
λ (u, v, s)

eat Γλ(u, v, s− a)

tneat+b eb Γλ(u+ n, v, s− a) = ebΓ
(n)
λ (u, v, s− a)

sin at 1
2i

[Γλ(u, v, s+ ia)− Γλ(u, v, s− ia)]
cos at 1

2i
[Γλ(u, v, s+ ia) + Γλ(u, v, s− ia)]

sinh at 1
2

[Γλ(u, v, s+ a)− Γλ(u, v, s− a)]
cosh at 1

2
[Γλ(u, v, s+ a) + Γλ(u, v, s− a)]

eat sin bt 1
2i

[Γλ(u, v, s− a+ ib)− Γλ(u, v, s− a− ib)]
eat cos bt 1

2i
[Γλ(u, v, s− a+ ib) + Γλ(u, v, s− a− ib)]

(t+ p)r
∑r

n=0C(r, n) pr−n Γλ(u+n, v, s) =
∑r

n=0C(r, n) pr−n Γ
(n)
λ (u, v, s)

4.1 Table of Generalized Gamma Transforms Du,vm [f(t)]

The generalized gamma transform, defined in (13), of certain elementary func-
tions, trigonometric and hyperbolic functions are provided in the following table:

Table 3: Generalized Gamma Transforms in terms of Kobayashi’s
function & UGF

f(t) Du,v
m [f(t)]

1 Γm(u, v)
t Γm(u+ 1, v)
tn Γm(u+ n, v)
eat Γm(u, v, 1− a)
tneat+b eb Γm(u+ n, v, 1− a)
sin at 1

2i
[Γm(u, v, 1 + ia)− Γm(u, v, 1− ia)]

cos at 1
2i

[Γm(u, v, 1 + ia) + Γm(u, v, 1− ia)]
sinh at 1

2
[Γm(u, v, 1 + a)− Γm(u, v, 1− a)]

cosh at 1
2

[Γm(u, v, 1− a) + Γm(u, v, 1− a)]
eat sin bt 1

2i
[Γm(u, v, 1− a+ ib)− Γm(u, v, 1− a− ib)]

eat cos bt 1
2i

[Γm(u, v, 1− a+ ib) + Γm(u, v, 1− a− ib)]
(t+ p)r

∑r
n=0C(r, n) pr−n Γm(u+ n, v)

The representation of Du,vm [f(t)] of elementary and other functions listed above
in terms of UGF is the strong justification for defining the UGT. The generalized
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gamma transform of functions containing exponential and transcendental functions
enjoys the definition of UGF defined in (1).

5. Probability Density Associated with UGF

In a systematic study of generalized probability density functions associated
with generalized gamma-type functions as well as hypergeometric functions and
their statistical properties, special functions find significant role ([3], [4], [10], [11],
[16]). It is obvious that the gamma function (1) was studied by Banerji and Sinha
[5] and may be derived from the generalized gamma-type functions defined by
other authors. It is legitimate to present the following statistical affiliations of this
function and to evaluate the bonafied properties in statistical analysis of pdf.
The probability density function (pdf) of a random variable X associated with
ultra gamma function(1) is defined by,

f(x) =
xu−1e−sx(x+ v)−λ

Γλ(u, v, s)
, 0 < x <∞ (27)

It is very akin to observe that
∫∞
0
f(x) dx = 1, i.e., the total probability with

respect to this pdf is unity. However, it is important to note that the nature of the
above pdf at x = 0 can only be explained by considering the values of u, i.e.,

f(0) =

{
0, u > 1
Γ−1λ (1, v, s), u = 1

(28)

5.1 Special Cases of f(x)

1. If we set s = 1 and λ = m, the density function becomes

f(x) =
xu−1e−x(x+ v)−m

Γm(u, v)
, 0 < x <∞, (29)

where Γm(u, v) stands for Kobayashi’s generalized gamma function defined
in equation (9).

2. Taking s = 1 and λ = 0, the density function reduces to classical gamma
distribution given by

f(x) =
1

Γ(u)
xu−1e−x, 0 < x <∞, (30)
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3. If we replace x by
(
x
θ

)β
, v by k and s = 1, the pdf defined in (27) reshapes

in the form of generalized gamma-type distribution recently considered by
El-Fateh et al. [6] where they provide the application of the distribution in
the mathematical modelling of inventory control problem. The distribution
is expressed as

f(x;α, k, θ, λ, β) =
β

θΓλ(α, k)

(x
θ

)αβ−1
e−(xθ )

β
[(x
θ

)β
+ k

]−m
, 0 < x <∞,

(31)
with x > 0 and all the parameters are strictly positive except λ, which may
be zero also. Also, Γλ(α, k) is already defined in equation (9).

5.2 Bonafied Statistical Properties

The aim of this section is to elaborate the distribution over a wide range of
statistical properties that are useful in the analysis of a distribution in totality.
These properties include moments, cumulative distribution function (cdf), moment
generating function, etc.

5.2.1 The k-th Moment of f(t)

The k-th moment about origin of the scale of random variable X with respect
to the pdf given by (27), is defined by

E[Xk] =

∫ ∞
0

tk f(t) dt. (32)

Inserting the value of the function in (32), we obtain

E[Xk] =

∫∞
0
tu+k−1e−st (t+ v)λ dt

Γλ(u, v, s)
=

Γλ(u+ k, v, s)

Γλ(u, v, s)
=

Γ
(k)
λ (u, v, s)

Γλ(u, v, s)
. (33)

Now, one of the special cases of E[Xk], for k = 1, represents the mean of the
random variable X, i.e., the mean is the first moment

E[X] =

∫ ∞
0

t f(t) dt =
Γλ(u+ 1, v, s)

Γλ(u, v, s)
=

Γ
′

λ(u, v, s)

Γλ(u, v, s)
. (34)

Similarly, we can evaluate the variance of the random variable X, denoted by σ2
X ,

using (32) with k = 2 and the formula

σ2
X = E[X2]− (E[X])2 =

Γ
′

λ(u, v, s)Γ
′′

λ(u, v, s)

Γ2
λ(u, v, s)

[
Γλ(u, v, s)

Γ
′
λ(u, v, s)

− Γ
′

λ(u, v, s)

Γ
′′
λ(u, v, s)

]
. (35)
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In equations (34) and (35), the prime and double prime over Γ denote the first and
second partial derivatives of the UGF with respect to s respectively.
Note: The nth derivative of generalized gamma function (UGF), with respect to
s, proposed by Banerji and Sinha [5] at equation (3.11) seems to be incorrect, i.e.,
the formula given by them

∂nΓλ(u, v, s)

∂sn
= (−)nsn

∫ ∞
0

tu−1e−st

(t+ v)λ
dt, (36)

needs to be corrected as

∂nΓλ(u, v, s)

∂sn
= Γ

(n)
λ (u, v, s) = (−1)n

∫ ∞
0

tu+n−1e−st

(t+ v)λ
dt = (−1)nΓλ(u+ n, v, s).

(37)
5.2.2 The Moment Generating Function

The moment generating function of the random variable X is defined by

MX(t) = E[etX ] =

∫ ∞
0

etx f(x) dx. (38)

Inserting the value of the function from (9) and combining the exponential terms
in the integrands, we obtain the moment generating function given by

MX(t) = E[etX ] =
Γλ(u, v, s− t)

Γλ(u, v, s)
= Γ−1λ (u, v, s)=u,vs,λ[etx], (39)

where =u,vs,λ[· · · ] is the UGT defined in equation (12) above. This generating func-
tion, upon using the Taylor series expansion preserving the convergence conditions,
can also be written as

MX(t) = E[etX ] = Γλ(u, v, s− t) =
∞∑
k=0

tk

k!
E[Xk] =

∞∑
k=0

Γ
(k)
λ (u, v, s)

Γλ(u, v, s)

tk

k!
, (40)

where Γ
(0)
λ (u, v, s) = Γλ(u, v, s).

5.2.3 The Probability Distribution F(x)

The cumulative density function F (x) of a random variable associated with
UGF is given by,

F(x) = P (X ≤ x) =

∫ x

0

f(t) dt = Γ−1λ (u, v, s)

∫ x

0

tu−1e−st

(t+ v)λ
dt =

Γλ(u, v, s;x)

Γλ(u, v, s)
,

(41)
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where Γλ(u, v, s;x) denotes the incomplete UGF studied by Banerji and Sinha [5].
Taking the cognizance of (41), the survivor function S(x) can be expressed as

S(x) = P (X ≥ x) = 1−F(x) =

∫ ∞
x

f(t) dt =
γλ(u, v, s;x)

Γλ(u, v, s)
. (42)

Here γλ(u, v, s;x) denotes another incomplete gamma function, of which the special
cases / generalizations have been defined and studied by many mathematicians in
applicable analysis.

5.2.4 The Hazard Rate Function h(x)

The hazard rate function for a probability density function f(x) is defined by

h(x) =
f(x)

S(x)
(43)

Using (27) and (42), it follows that

h(x) =
xu−1e−sx(x+ v)−λ

γλ(u, v, s;x)
. (44)

The hazard function for probability density consisting of Kobayashi’s generalized
gamma function and that for classical gamma distribution can be obtained by
specializing the appropriate parameter(s) involved in (41).

5.2.5 The Mean Residue Life Function K(x)

For a random variable X, the mean residue life function is defined by

K(x) = E[X − x/X ≥ x] =

∫∞
x

(t− x) f(t) dt

S(x)
=

∫∞
x
t f(t) dt

S(x)
− x. (45)

Now, since
∫∞
x
f(t) dt = γλ(u, v, s;x)/Γλ(u, v, s), it follows

K(x) =
γλ(u+ 1, v, s;x)

Γλ(u, v, s)
− x. (46)
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Appendix

H-function:

The Fox’s H-function is defined by following contour integral representation

Hm,n
p,q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣∣z
]

= Hm,n
p,q

[
(a1, A1), · · · , (ap, Ap)
(b1, B1), · · · , (bq, Bq)

∣∣∣∣∣z
]

=
1

2πi

∫
L
zsχ(s) ds, (47)

where i = (−1)1/2, z 6= 0 and zs = exp[s log |z|+ iarg z], in which log |z| represents
the natural logarithm of |z| and arg z is not necessarily the principal value. An
empty product is interpreted as unity. Here χ(s) stands for

χ(s) =

m∏
j=1

Γ(bj −Bjs)
n∏
j=1

Γ(1− aj + Ajs)

q∏
j=m+1

Γ(1− bj +Bjs)

p∏
j=n+1

Γ(aj − Ajs)
, (48)

where m, n, p and q are nonnegative integers such that 0 ≤ n ≤ p, 1 ≤ m ≤
q; Aj(j = 1, · · · , p), Bj(j = 1, · · · , q) are positive numbers; aj(j = 1, · · · , p), bj(j =
1, · · · , q) are complex numbers such that

Aj(bh + ν) 6= Bh(aj − λ− 1),

for ν, λ = 0, 1, 2, . . . ; h = 1, . . . ,m; j = 1, . . . , n.
For description of the contour L and other conditions of existence of this function,
one may refer Mathai and Saxena [14].
Following properties of H-function have been used in the findings of this paper:

Property 1: Argument reversion property of the H-function is

Hm,n
p,q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣∣x
]

= Hm,n
p,q

[
(1− bq, Bq)
(1− ap, Ap)

∣∣∣∣∣1x
]
. (49)

This is the most important property which enables to transform the H-function
from its argument x to the argument 1/x.

Property 2: Multiplication of H-function with power function yields another H-
function given by

xσHm,n
p,q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣∣x
]

= Hm,n
p,q

[
(ap + σAp, Ap)
(bq + σBq, Bq)

∣∣∣∣∣x
]

; (50)
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Property 3: Following result pertaining to a special case of H-function as binomial
function has also been used in the sequel of this paper

H1,1
1,1

[
(1− ν, 1)

(0, 1)

∣∣∣∣∣x
]

= Γ(ν)(1 + x)−ν . (51)

Wiener-Hopf technique:

The integral equation appearing in Wiener-Hopf technique related to mathematical
theory of diffraction by a finite strip is

Ψ1,2
+ (λ)√
κ+ λ

± 1

2π

∫ ∞+ic

−∞+ic

Ψ1,2
+ (λ)√
α− κ

e2iα

α + λ
dα = Fa(λ) +Ga(λ)± Fb(λ)±Gb(λ), (52)

where

Fa,b(λ) =
qe2ip

λ± p

(
1√
κ+ λ

− 1√
κ∓ λ

)
, Ga,b(λ) = − qe2ip

λ± p
(W0(λ)−W0(∓p))

and

−κ2 cos θi < −c < Im(λ) < c < κ2 cos θi, W0(λ) =
√

2e−i(2λ+π/4)
F (2

√
(κ+ λ)/π)√
κ+ λ

and the Fresnel integral is defined by

F (z) =

∫ ∞
z

e
iπ
2
t2dt. (53)


