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Abstract: The analytical solution to the Schrödinger equation in D-dimensions
with multiparameter-type potential were obtained using Nikiforov-Uvarov method,
and applying the pekeris approximation to the centrifugal term. For convenience,the
equation are reduced to the hypergeometricform,where the energy eigen values and
corresponding eigenfunction are obtained.The expectation values 〈r−2〉, 〈q+e2αr〉−1
and 〈q+ e2αr〉−2 are obtained in D-Dimension using Hellmann-Feynman Theorem.
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1. Introduction
The Schrodinger wave equation acts as the engine room of quantum mechan-

ics. over the years and in recent times the exact solution of Schrödinger equation
for some special physical potential has attracted so much interest. Some of these
potential are the Hulthen potential, [1] the Rose- Morse potential, [2] the Morse
potential, [3] the Eckart potential, [4] the five parameter exponential-type poten-
tial, [5] the Poschl-Teller potential, [6] Manning-Rosen potential [7] and others.
The harmonic oscillator and Hydrogen atom problems are two exactly solvable
potentials which have been investigated in N-dimensional quantum mechanics for
any angular momentum . [8-10] These two problems are related and hence the
resulting in second order differential equation has the normalized orthogonal poly-
nomial function solution. [11] The analytical method have also been used to solve
the wood-saxon and manning-rosen potential [12]. Different methods have been
introduced in solving schrödinger equation for various potentials [13]. Among such
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methods include the super symmetric(SUSY)and shape-invariance method, [14] the
variational, [15]the standard method, [16] path integral approach, [17] the asymp-
totic interaction method (AIM), [18] the Nikiforov-Uvarov method(NU) [19] and
others. In this work we have tried to investigate the analytical solution of the
schrodinger equation in D-dimension with Multiparameter-type potential [20-21].

V(r) = A+
B

(q + e2αr)
+

C

(q + e2αr)2
+

Fbe2αr

(q + e2αr)
+

Gbe2αr

(q + e2αr)2
(1)

where A, B, C, F, G are the potential parameters,q is the deformation parame-
ter, b = e2αre , re is the distance form equilibrium position and α is the screening
parameter, which have diverse application in physics, chemistry and applied math-
ematics.

2. Review of Nikiforov-Uvarov
The Nikiforov-Uvarov method [22] was introduced to solve second-order differ-

ential equation of the form

ϕ′′(s) +
τ̃(s)

σ(s)
ϕ′(s) +

σ̃(s)

σ2(s)
ϕ(s) = 0 (2)

With appropriate co-ordinate transformation, s = s(r), where σ(s) and σ̃(s) are
polynomials at most a second order and τ̃(s) is a first degree polynomial. The
parametric form of the schrödinger-like equation is stated as [23]

d2ϕ

ds2
+

α1 − α2s

s(1− α3s)

dϕ

ds
+

1

s2(1− α3s)2
[−ξ1s2 + ξ2s− ξ3]ϕ(s) = 0 (3)

The eigenfunction and the corresponding energy eigenvalues equation are obtained
according to NU method [24]

ϕ(s) = sα12(1− α3s)
−α12−α13α3 p(α10−1,(α11/α3)−α10−1)

n (1− 2α3s), (4)

(α2−α3)n+α3n
2−(2n+1)α5+(2n+1)(

√
α9+α3

√
α8)+α7+2α3α8+2

√
α8α9 = 0

(5)

α4 =
1− α1

2
, α5 =

(α2 − 2α3)

2
, α6 = α2

5 + ξ1, α7 = 2α4α5 − ξ2,

α8 = α2
4 + ξ3, α9 = α3α7 + α2

3α8 + α6, α10 = α1 + 2α4 + 2
√
α8,
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α11 = α2−2α5+2(
√
α9+α3

√
α8), α12 = α4+

√
α8, α13 = α5−(

√
α9+α3

√
α8) (6)

3 D-Dimensional Schrödinger Equation and Solutions
The Schrödinger equation for a spherically symmetric potential in D-dimensional

[25] reads
−}2

2µ
[∇2

D + V (r)]ψnlm(r,Ωm) = Enlψnlm(r,Ωm), (7)

where the Laplacian operator is defined as

∇2
D =

1

rD−1
∂

∂r

[
rD−1

∂

∂r

]
− Λ2

D(ΩD)

r2
, (8)

where V (r) is the potential, µ is the reduced mass, } is the reduced planck con-
stant, Enl is the energy spectrum and ΩD represents the angular co-ordinate. The
hyperspherical harmonic functions are the eigenfunction of the operator Λ2

D(ΩD).
Thus, we write

ψnlm(r,Ωm) = Rnl(r)Y
m
l (ΩD) (9)

Where Y m
l (ΩD) are hypespherical harmonic and Rnl(r) is the hyper radial wave

function. It is well known that
Λ2
D(ΩD)

r2
is a generalization of the centrifugal

barrier for the D-dimensional space and involve the angular co-ordinate (ΩD) and
the eigenvalue of the hyperspherical harmonic functions Λ2

D(ΩD) are given by

Λ2
D(ΩD)Y m

l (ΩD) = l(l +D − 2)Y m
l (ΩD) (10)

where l is the arbitrary angular momentum quantum number. By choosing a
common ansatz for the wave function in the form

Rnl(r) = r−(D−1)/2Unl(r) (11)

Equation (7) reduces into the Schrodinger equation in D-Dimension as [25]

d2Unl(r)

dr2
+

2µ

}2
[E − V (r)]Unl(r) +

1

r2

[
(D − 1)(D − 3)

4
+ l(l +D − 2)

]
Unl(r) = 0

(12)
Substituting equation (1) into (12), we have

d2Unl(r)

dr2
+

{
2µE

}2
− 2µ

}2

[
A+

B

(q + e2αr)
+

C

(q + e2αr)
+

Fbe2αr

(q + e2αr)
+

Gbe2αr

(q + e2αr)2

]
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+
1

r2

(
(D − 1)(D − 3)

4
+ l(l +D − 2)

)}
Unl(r) = 0 (13)

To solve equation (13) for l 6= 0 we need to apply the Pekeris approximation to the
centrifugal term given by [26]

1

r2
≈ 1

r2e

(
d0 + d1

1

(q + e2αr)
+ d2

1

(q + e2αr)2

)
(14)

Introducing a change in variable through s = −qe−2αr, We obtain the following
compact hyper geometric equation

d2Unl
ds2

+
(1− s)
s(1− s)

dUnl(s)
ds

+
1

s2(1− s)2
[−(ε2 + γ + β)s2

+(2ε2 + γ +m)s− (ε2 + ϕ)]Unl(s) = 0 (15)

where

−ε2 =
2µE

4α2}2
− 2µA

4α2}2
+ d0

1

4α2r2e

[
(D − 1)(D − 3)

4
+ l(l +D − 2)

]
(16)

γ =
2µB

4α2}2q
− d1

1

4α2r2eq

[
(D − 1)(D − 3)

4
+ l(l +D − 2)

]
(17)

β =
2µC

4α2}2q
− d2

1

4α2r2eq
2

[
(D − 1)(D − 3)

4
+ l(l +D − 2)

]
(18)

M =
2µFb

4α2}2
+

2µGb

4α2}2
(19)

ϕ =
2µFb

4α2}2
(20)

Now comparing equation (15) with equation (3), we find the following parameter

α1 = α2 = α3 = 1, ξ1 = ε2 + γ + β, ξ2 = 2ε2 + γ +M, ξ3 = ε2 + ϕ (21)

Using equation (6), We determine the remaining co-efficient as

α4 = 0, α5 = −1

2
, α6 = ε2 + γ + β +

1

4
,
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α7 = −2ε2 − γ −M, α8 = ε2 + ϕ, α9 = ϕ+ β +
1

4
−M,

α10 = 1 + 2
√
ε2 + ϕ, α11 = 2 + 2

(√
ϕ+ β +

1

4
−m+

√
ε2 + ϕ

)

α12 =
√
ε2 + ϕ, α13 = −1

2
−

(√
ϕ+ β +

1

4
−M +

√
ε2 + ϕ

)
(22)

Using equation ( 22) the explicit form of the energy eigenvalues is given as

E = −2α2}2

µ

{[
ϕ− β − γ
2(n+ σ)

+
(n+ σ)

2

]2
+

d0
1

4α2r2e

[
(D − 1)(D − 3)

4
+ l(l +D − 2)

]}
+ Fb+ A (23)

where,

σ =
1

2
+

√
ϕ+ β +

1

4
−M (24)

and the explicit wave function is given as

ϕ(r) = (−qe−2αr)
√
ε2+ϕ(1+qe−2αr)

1
2
+
√
ϕ+β+ 1

4
−MP

(2
√
ε2+ϕ,2

√
ϕ+β+ 1

4
−M)

n (1+2qe−2αr)
(25)

The expectation values 〈r−2〉, 〈q + e2αr〉−1 and 〈q + e2αr〉−2 can be obtained us-
ing the Hellmann-Feynmann theorem (HFT) [27-29] taking into consideration the
Hamiltonian H of a particular quantum system with a function of some parameter
q, the energy eigenvalue En(q) and the eigenfunction ϕn(q) and it states that

∂En(q)

∂q
= 〈ϕn(q)

∣∣∣∣∂H(q)

∂q

∣∣∣∣ϕn(q)〉 (26)

The effective Hamiltonian of the hyper radial function is given as

H = − }2

2µ

d2

dr2
+

}2

2µ

(D + 2l − 1)(D + 2l − 3)

4r2
+

A+
B

(q + e2αr)
+

C

(q + e2αr)2
+

Fbe2αr

(q + e2αr)
+

Gbe2αr

(q + e2αr)2
(27)
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To obtain 〈r−2〉, we let q = l

∂E

∂l
= 〈ϕn(l)

∣∣∣∣∂H(l)

∂l

∣∣∣∣ϕn(l)〉 (28)

∂E

∂L
= −4α2}2

µ
×

(n+σ)(2l+D−2)
2α2r2eq

[
d2
q

+ d1

]
+ (ϕ− β − γ) d2

4α2r2eq
2 (2l +D − 2)

[
ϕ+ β + 1

4
−m

] 1
2

[2(n+ σ)]2

−1(2l +D − 2)

16α2r2eq
2

[
ϕ+ β +

1

4
−m

]− 1
2

}[
(ϕ− β − γ)

2(n+ σ)
+

(n+ σ)

2

]
− d0}

2

2µr2e
(2l+D−2)

(29)
Thus by the HFT, we have

〈r−2〉 =
2u

}2(2l +D − 2)

{
−4α2}2

µ
×

 (n+σ)(2l+D−2)
2α2r2eq

[
d2
q

+ d1

]
+ (ϕ− β − γ) d2

4α2r2eq
2 (2l +D − 2)

[
ϕ+ β + 1

4
−M

] 1
2

[2(n+ σ)]2

−1(2l +D − 2)

16α2r2eq
2

[
ϕ+ β +

1

4
−M

]− 1
2

]
[

(ϕ− β − γ)

2(n+ σ)
+

(n+ σ)

2

]
− d0}2

2µr2e
(2l +D − 2)

}
(30)

Similarly, by letting q=B, we obtain

〈q + e2αr〉−1 =
1

q(n+ σ)

[
(ϕ− β − γ)

2(n+ σ)
+

(n+ σ)

2

]
(31)

Similarly, by letting q=C, we obtain

〈q + e2αr〉−2 = −4α2}2

µ

[
−2µ(n+ σ)− µ(ϕ− β − γ)(ϕ+ β + 1

4
−M)

1
2

8α2}2q(n+ σ)2
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+
µ(ϕ+ β + 1

4
−M)−

1
2

8α2}2q(n+ σ)2

][
(ϕ− β − γ)

2(n+ σ)
+

(n+ σ)

2

]
(32)

4 Conclusions
In summary, we have investigated the D-dimensional schrödinger equation with

multiparameter potential analytically for arbitrary lstate by means of the Nikiforov-
Uvarov method and using a reasonable approximation. Expectation values 〈r−2〉,
〈q+e2αr〉−1 and 〈q+e2αr〉−2 were calculated using the Hellmann-Feynman Theorem.
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