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Email: jlopezb@ipn.mx

3Technical University of Cluj Napoca North University Center of Baia Mare,
Department of Mathematics and Computer Science

Victoriei 76, 430122 Baia Mare, Romania
Email: plaurian@yahoo.com

Dedicated to Prof. M.A. Pathan on his 75th birth anniversary

Abstract: We employ an expression for the Laplace transform, based in integra-
tion by differentiation, to deduce the Post-Widders formula for the inversion of
this transform. Besides, we apply the Kempf et al process to deduce the Lanczos
generalized derivative.
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1. Introduction
If we know the Laplace transform [1]:

F (s) =

∫ ∞
0

e−stf(t)dt, (1)

the aim is to determine f(t); in [2] was obtained the following formula to do the
integration in (1) via differentiation:

F (s) = f

(
− d

ds

)
1

s
(2)
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In Sec. 2 we show that (2) leads to the Post-Widders expression [3-6] for the inverse
Laplace transform. Kempf et al [2, 7] exhibit how to determine a definite integral
via differentiation, in fact, they find the interesting expression:∫ b

a

F (x)dx = lim
t→0

F

(
d

dt

)[
ebt − eat

t

]
(3)

The Sec. 3 contains an elementary proof of (3), besides we use (3) to obtain the
Lanczos generalized derivative [8-14].

2. Inversion of the Laplace Transform

In (2) we apply the operator
dm

dsm
and besides f(t) is written in its Taylors series

with respect to t = b:

F (m)(s) =
∞∑
n=0

(−1)n

n!
f (n)(b)

n∑
k=0

(
n

k

)
bn−k

(
d

ds

)m+k
1

s

but

(
d

ds

)m+k
1

s
=

(−1)m+k(m+ k)!

sm+k+1
and we take b = t with s =

m

t
, hence:

F (m)
(m
t

)
=

(−1)mtm+1

mm+1
m!

∞∑
n=0

(−1)n

n!
f (n)(t)tn

n∑
k=0

(
n

k

)
(−1)k(m+ k)!

m!mk

= (−1)m
(
t

m

)m+1

m!

[
f(t) + tf (1)(t)

1

m
+

t2

2!
f (2)(t)

1

m

(
1 +

2

m

)
+
t3

3!
f (3)(t)

1

m2

(
5 +

6

m

)
+ ...

]
,

therefore:

lim
m→∞

(−1)m

m!

(m
t

)m+1

F (m)
(m
t

)
= f(t), (4)

which coincides with the celebrated formula of Post-Widder [3-6] for the inversion
of the Laplace transform.

3. Kempf et al Formula and Orthogonal Derivative
Here we show a simple manner to deduce (3):∫ b

a

xndx =
1

n+ 1
(bn+1 − an+1) =

[
dn

dtn

∞∑
r=0

br+1 − ar+1

(r + 1)!
tr

]
t=0

,



Integration by Differentiation 93

= lim
t→0

[
dn

dtn
1

t

∞∑
k=0

bk − ak

k!
tk

]
= lim

t→0

dn

dtn
ebt − eat

t
,

then: ∫ b

a

F (x)dx =
∞∑
n=0

F (n)(0)

n!

∫ b

a

xndx = lim
t→0

∞∑
n=0

F (n)(0)

n!

dn

dtn
ebt − eat

t
,

hence (3) is immediate.

Now we apply (3) for the case F (x) = xf(x+x0), with a = −b = −ε, therefore:

ebt − eat

t
= 2ε

(
1 +

ε2

3!
t2 +

ε4

5!
t4 + ...

)
, F (x) = f(x0)x+f ′(x0)x

2+
1

2!
f ′′(x0)x

3+...,

thus from (3): ∫
−ε
εxf(x+ x0)dx

= 2ε lim
t→0

[
f(x0)

d

dt
+ f ′(x0)

d2

dt2
+

1

2!
f ′′(x0)

d3

dt3
+ ...

](
1 +

ε2

3!
t2 +

ε4

5!
t4 + ...

)
= 2ε3

[
1

3
f ′(x0) +

ε2

5 · 3!
f ′′′(x0) +

ε4

7 · 5!
f (5)(x0) + ...

]
,

then it is evident the expression:

f ′(x0) = lim
ε→0

2

ε3

∫ ε

−ε
xf(x+ x0)dx, (5)

which coincides with the Lanczos generalized derivative [8-14].
Remark. The relation (3) represents integration by differentiation, but (5) ex-
presses the inverse process, that is, differentiation by integration.
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