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Abstract: We employ an expression for the Laplace transform, based in integra-
tion by differentiation, to deduce the Post-Widders formula for the inversion of
this transform. Besides, we apply the Kempf et al process to deduce the Lanczos
generalized derivative.
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1. Introduction
If we know the Laplace transform [1]:

F(s) = /00 e S f(t)dt, (1)

0

the aim is to determine f(t); in [2] was obtained the following formula to do the
integration in (1) via differentiation:

Fo=1(-5)3 2)
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In Sec. 2 we show that (2) leads to the Post-Widders expression [3-6] for the inverse
Laplace transform. Kempf et al [2, 7] exhibit how to determine a definite integral
via differentiation, in fact, they find the interesting expression:

/abF(a;)dx — lim F (%) [ebt - eat} (3)

The Sec. 3 contains an elementary proof of (3), besides we use (3) to obtain the
Lanczos generalized derivative [8-14].

2. Inversion of the Laplace Transform
In (2) we apply the operator —— and besides f(¢) is written in its Taylors series

) ds™
with respect to t = b:
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therefore:
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which coincides with the celebrated formula of Post-Widder [3-6] for the inversion
of the Laplace transform.

3. Kempf et al Formula and Orthogonal Derivative
Here we show a simple manner to deduce (3):
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then:

hence (3) is immediate.

Now we apply (3) for the case F(z) = xf(x+x), with a = —b = —¢, therefore:

bt at 2
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— 1
¢ - R (1 + ;ﬁ - %t‘* + ) , F(x) = f(:co)x+f/(a:0)x2+Ef”(xo)x?ur...,

thus from (3):
/ ex f(x + xo)dx

= 2¢eli d ! d? L., d’ 1 62752 64154
= 2elim f(xo)E—Ff(Io)ﬁ-Faf (xo)ﬁ—i-... +§ +a +
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then it is evident the expression:

F(wo) =tim = [ wf(e+ o)z, (5)

e—0 63

which coincides with the Lanczos generalized derivative [8-14].
Remark. The relation (3) represents integration by differentiation, but (5) ex-
presses the inverse process, that is, differentiation by integration.
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