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Abstract: In this survey article, the group theory of the 24 Kummer solutions of
the Gauss second order ordinary differential equation and the group theory of the

3F2(a, b, c; d, e; 1) transformations of Weber-Erdelyi, giving rise to a new 72-element
group.

1. Introduction

Leonhard Euler (1707 - 1783) is perhaps the first to study the hypergeomet-
ric functions, in 1748. The modern framework for the hyper geometric series and
the corresponding hypergeometric functions is due to Gauss. Carl Friedrich Gauss
(1777 - 1855), the German mathematician has been acknowledged as one of the
three leading mathematicians of all time, with Archimedes (287 B.C. – 214/212
B.C.) and Sir Isaac Newton (1642 – 1727), being the other two. Besides his contri-
bution to the theory of numbers, his outstanding work includes the discovery of the
Method of Least Squares, the hypergeometric series and non-Euclidian geometry.
His collected papers run to several volumes and were being edited at Göttingen in
the 20th century. In 1812, recognizing the importance of the property of conver-
gence of an infinite series, he published his comprehensive thesis on “Disquisitiones
generales circa seriem infinitam” [1]. Historically, the geometric series:

(1− x)−1 = 1 + x+ x2 + x3 + · · ·+ xn + · · · =
∞∑
k=0

xk, ∀ 0 ≤ x < 1, (1)

the first theorem which one comes across in School as a special case of the Binomial
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theorem, when read as:

1 + x+ x2 + x3 + · · ·+ xn + · · · =
∞∑
k=0

xk = (1− x)−1, ∀ 0 ≤ x < 1, (2)

is also the first summation theorem one comes across in life as a student of math-
ematics! Wallis [2], called a series with its nth term given by

a(a+ b)(a+ 2b) · · · (a+ (n− 1)b)

as the hypergeometric series. For b = 1

(a)n =
Γ(a+ n)

Γ(a)
, with (a)0 = 1, (3)

is called the Pochhammer symbol. Gauss [1] made a sweeping generalization and
introduced to the world of mathematics the hypergeometric series, in 1812, as:

1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(+1)

z2

2!
+ · · · =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
= 2F1(a, b; c; z), (4)

which takes one above or beyond (‘hyper’) the geometric series. For,
(i) when a = 1, b = c, it is the geometric series; (ii) when a = b = 1, c = 2, z = 1
it is the harmonic series:

2F1(1, 1; 2; 1) =
∞∑
n=0

(1)n(1)n
(2)n

1n

n!
. (5)

From the ratio test, it follows that the series converges for all |z| < 1, diverges for
all |z| > 1 and for |z| = 1, converges if c− a− b > 0.

It is to be emphasized that Gauss (1812), while announcing the hypergeometric
series stated explicitly that it should not be considered as a series in one variable
z, and a, b treated as numerator parameters and c as the denominator parameter,
but that it should be treated as a function of four variables F (a, b, c, z). It was also
shown to be the solution of the second ordinary differential equation characterized
by three regular singular points at 0, 1, ∞:

z(1− z)
d2u(z)

dz2
+ [c− (a+ b+ 1)z]

du(z)

dz
− abu(z) = 0, (6)

where a, b, and c, are complex parameters, and has one solution as the hypergeo-
metric series 2F1(a, b; c; z), which belongs to a set of 24 functions. Kummer (1810
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- 1893) published a set of 6 distinct solutions of the hypergeometric equation. Each
of these six solutions has four forms, related to one another by Euler’s transforma-
tions, giving 24 forms in total [3], given in the classical monographs of Bailey [4]
and Lucy Slater [5]. That these 24 solutions are related to one another by a finite
group of transformations was observed by the author, with Leuvens and vander
Jeugt [6]. This finite group of order 24 (or, by natural extension, when the trivial
numerator parameter transformations of a, b makes it a group of order 48) was
characterized. The finite group of 24 Kummer solutions is shown to be isomorphic
to the symmetric group S4. The idea was to find a mapping of the four ‘variables’
of the Gauss function onto the six parameters that may be associated with the
six sides of the ordinary cube. If the six variables of the cube are xi, (i = 1, . . . 6)
satisfying the constraint

∞∑
0

xi = 0 (7)

and the function is :

f(x) = F (
1

2
+ x1 + x2 + x3,

1

2
+ x1 + x2 + x4; 1 + x1 − x6; −

x1 + x6
x3 + x4

). (8)

Identifying the four arguments of F with a, b, c and z; solving this system with
respect to the xi leaves one degree of freedom (since there is constraint on the
six parameters associated with the sides of the cube, and so only 5 of the xi’s are
independent.).

Consider any element of g of the group, the action of g on x is determined by
permuting the indices of the xi. So, acting with g1 = (2, 4, 5, 3) on f(x) gives

f(g1 · x) = F (
1

2
+ x1 + x2 + x4,

1

2
+ x1 + x4 + x5; 1 + x1 − x5; −

x1 + x6
x2 + x5

) (9)

and this is equal to F (b, c− a, ; ; z/(z− 1)) when the original f(x) is identified
with F (a, b, ; c; z). Similarly, one finds with g2 = (1, 2, 6, 5) that

f(g2 · x) = F (1 + a− c, 1 + b− c; 1 + a+ b− c; 1− z). (10)

For each element g of this group, the corresponding function f(g · x) is given in a
table in that article in which every elements of the group is associated with one of
the 24 Kummer solutions, thereby establishing a unique one-to-one correspondence
between the 24 symmetries of the cube and the 24 solutions of Kummer. In fine,
the two pages of output in any of the texts listing the 24 Kummer solutions for
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the Gauss ODE, is now a one line statement, with the action of any element of our
group is obtained by the 24 permutations of the indices, as follows:

g f(x)→ C(g · x)

C(x)
f(g · x), (11)

where
C(x) = (−1)α(x1 + x6)

β(x2 + x5)
γ(−x3 − x4)δ, (12)

with

α =
x1 − x6

4
+

1

12
; β =

x1 − x6
2

+
1

6

γ =
(x2 − x5)

2
+

1

6
; δ =

x1 − x6
2

+
x2 − x5

2
+

1

3
.

We extended the group to a group of order 48, by adding the additional generator
g3 = (3, 4) to g1, g2 corresponding to a reflection about a plane.

A Group of 3F2(1) transformations
A recursive use of the transformation for a terminating 3F2(1) series used by

Weber and Erdelyi (1952), led them to obtain a second transformation from a
given transformation. It has been shown by K. Srinivasa Rao et. al (1992) that
they belong to a 72 element group associated with 18 terminating series. The
generators, conjugacy classes, invariant subgroups, characters and dimensions of
irreducible representations for this group were presented.

The transformation for a terminating 3F2(1) proposed by Weber and Erdelyi
(1952) :

3F2

(
a, b,−N
d, e

)
=

Γ(d, d+N − a)

Γ(d+N, d− a)
3F2

(
a, e− b,−N

1 + a− d−N, e

)
. (13)

This formula is one of a set (cf. Bailey 1935) obtained by Whipple (1925). If the
five parameters of the 3F2 on the l.h.s. of (13) are denoted by the column vector :

~x = (a, b, 1−N, d, e) , (14)

then the parameters of the 3F2 on the r.h.s. of (13) are obtained when the matrix :

g1 =


1 0 0 0 0
0 −1 0 0 1
0 0 1 0 0
1 0 1 −1 0
0 0 0 0 1

 (15)
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operates on ~x. Note that 1 − N is used instead of −N , as a component of the
column vector ~x, since it represents the number of terms in a terminating series.
However, 3F2(a, b,−N ; d, e) will be denoted by 3F2(~x).

Using (13) again, with the roles of d and e interchanged, to transform the r.h.s.
of (13), Weber and Erdelyi obtained the transformation :

3F2

(
a, b,−N
d, e

)
=

Γ(d, e, e+N − a, d+N − a)

Γ(d+N, e+N, d− a, e− a)
3F2

(
a, 1− s,−N

1− b+ d− s, 1− b+ e− s

)
,

(15)
where s = d + e − a − b + N . The question arises as to whether this recursive
use of the Weber-Erdelyi transformation (12) can be continued. In fact, such
a procedure when continued results in a group of 72 transformations, which are
the 18 terminating 3F2 series (see Appendix of KSR, et. al. 1992) on which are
superposed the a↔ b, d↔ e interchanges.

Let g2 and g3 be the matrices :
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 (16)

which interchanges a and b when it operates on ~x and interchanges d and e when it
operates on ~x, respectively. By forming all possible products of all possible powers
of g1, g2 and g3, a group of 72 transformation matrices can be generated which
provides a 5 × 5 representation for the terminating series, with (14) as the basis.
Thus, g1, g2 and g3 are the generators of a group GT for the transformations of a
terminating 3F2 series, with g2i = 1, for i = 1, 2, 3.

A similarity transformation, u−1giu, with :

u =


1 0 1 0 0
0 1 1 0 0
0 0 3 0 0
0 0 2 1 0
0 0 2 0 1

 and u−1 =
1

3


3 0 −1 0 0
0 3 −1 0 0
0 0 1 0 0
0 0 −2 3 0
0 0 −2 0 3

 , (17)

block diagonalizes the generators, and hence all the g ∈ GT , thereby reducing the
generators for the 5 × 5 representation into the generators for a one-dimensional
identity irrep (due to −N being kept fixed in (13)) and the generators for a four-
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dimensional faithful irrep given by :
1 0 0 0
0 −1 0 1
1 0 −1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (18)

The results obtained by Srinivasa Rao et.al.(1992) in their definitive study of the
group theoretical basis for hte terminating 3F2(1) series are summarized below:

Two elements h and h′ of a group G are said to be conjugate if there exists a gεG
such that h′ = ghg−1. This defines an equivalence relation on G, the equivalence
classes being called the conjugacy classes. Analysis of GT reveals that there are 9
conjugacy classes K1, . . . K9.

Following the general theory of group representations (ref. Wybourne 1970, or
Messiah 1964), the table of characters of the irreducible representations (irreps) of
GT has been obtained. As there are 9 conjugate classes, there are 9 inequivalent
irreps which are denoted by D(1), . . . D(9). Four irreps are of dimension 1, one is of
dimension 2 and four are of dimension 4. It is only the 4-dimensional irreps which
are faithful.

All the invariant subgroups H of GT have been found by Srinivasa Rao et.al.
Among these are the proper abelian invariant subgroups, hence GT is neither sim-
ple nor semi-simple. By definition, a subgroup H is a self-conjugate or normal
divisor or invariant subgroup iff GTHG

(−1)
T = h. To find the invariant subgroups

of GT , one can form unions of conjugacy classes and check if they close under the
group multiplication law. The following inclusion table gives a complete list of
the invariant subgroups of GT , with a subscript of H denoting the order of that
subgroup:

H9 ⊂ H18


⊂ H36 ⊂ GT ,

⊂ H ′36 ⊂ GT ,

⊂ H ′′36 ⊂ GT ,

(19)

where
H9 = K1 ∪K2 ∪K3 ,

H18 = H9 ∪K6 ,

H36 = H18 ∪K9 ,

H ′36 = H18 ∪K4 ∪K7 ,

H ′′36 = H18 ∪K5 ∪K8 .

(20)
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It should be noted that, in terms of the three generators gi (or g′i) introduced
previously, one can write

K6 = g2g3H9 , K9 = g1g2H18 , K4 ∪K7 = g1H18 , K5 ∪K8 = g2H18 , (21)

such that the invariant subgroups (23) can be characterized as follows in terms of
H9 and the three generators :

H18 = H9 ∪ g2g3H9 ,

H36 = H9 ∪ g2g3H9 ∪ g1g2H9 ∪ g1g3H9 ,

H ′36 = H9 ∪ g2g3H9 ∪ g1H9 ∪ g1g2g3H9 ,

H ′′36 = H9 ∪ g2g3H9 ∪ g2H9 ∪ g3H9 .

(22)

The smallest invariant subgroup, H9 , is easy to characterize. In fact H9 = C3×C3 ,
the direct product of two cyclic groups on three elements. In terms of the Whipple
parametrization, the generators of the two C3’s are (012) and (345). It is now
obvious that H9 is an abelian invariant subgroup of GT .

It should be noticed that all the invariant subgroups of GT can be found using
the character table and the fact that those elements h of GT with φ(h) = φ(1),
where φ is a (not necessarily simple) character of GT , form an invariant subgroup
(Ledermann 1977, Theorem 2.7).

Conversely, having the list of all invariant subgroups of GT , one can reconstruct
the character table. Indeed, the first character χ(1) is trivial. Next, if N is one of
H36, H

′
36 or H ′′36, G/N is the 2 element group C2, with non-trivial simple character

(1,−1). Using the “lifting process” (Ledermann 1977, Theorem 2.6), one obtains
the simple characters χ(2), χ(3) and χ(4) from H ′′36, H

′
36 and H36 respectively. This

completes the list of simple characters with χ
(i)
1 = 1. In order to find the remaining

simple characters, the theory of induced characters can be used. If H is a subgroup
of G for which a character Hφ is known, then

Gφi =
m

ki

∑
w

Hφ(w) , w ∈ Ki ∩H (23)

is a character (simple or compound) of G. Herein, m is the index of H and ki is
the order of Ki. As the simple characters of an abelian group are well known, H is
chosen to be H9 = C3 × C3, thus m = 72/9 = 8. Using the trivial character of H,
Hφ(1) = (1, 1, 1, 1, 1, 1, 1, 1, 1), one finds Gφ(1) = (8, 8, 8, 0, 0, 0, 0, 0, 0). By means of
the inner product for characters of GT ,

〈φ|ψ〉 =
1

72

9∑
i=1

kiφiψi , (24)
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it is found that

〈Gφ(1)|χ(1)〉 = 〈Gφ(1)|χ(2)〉 = 〈Gφ(1)|χ(3)〉 = 〈Gφ(1)|χ(4)〉 = 1. (25)

Thus, subtracting χ(1), . . . , χ(4) from Gφ(1), one obtains

Gφ′ = (4, 4, 4, 0, 0,−4, 0, 0, 0). (26)

Since all one-dimensional irreps have been found and

〈Gφ′|Gφ′〉 = 4, ⇒G φ′ (27)

is twice a simple character, i.e. Gφ′ = 2χ(5). The next simple character, χ(6), is
immediately deduced from our defining representation for g1, g2, g3. Using a non-
trivial character of H,

Hφ(2) = (1, 1, 1, ω, ω, ω, ω2, ω2, ω2), (28)

where
ω2 + ω + 1 = 0, (29)

the inducing process leads to Gφ(2) = (8, 2,−4, 0, 0, 0, 0, 0, 0). One can verify that
the inner product of Gφ(2) with χ(1), χ(2), χ(3), χ(4) and χ(5) is zero, and that

〈Gφ(2)|χ(6)〉 = 1. (30)

Subtracting χ(6) from Gφ(2), one obtains

Gφ′′ = (4, 1,−2, 0,−2, 0, 0, 1, 0). (31)

Since
〈Gφ′′|Gφ′′〉 = 1, (32)

it is a simple character, i.e.
Gφ′′ = χ(7). (33)

Two more simple characters χ(8) and χ(9) need to be found. Using the orthogonality
property satisfied by the columns of the character table of GT , namely

9∑
l=1

χ
(l)
i χ

(l)
j =

72

ki
δij , (34)

it is a straightforward exercise to complete the character table.
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