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1. Introduction and Preliminaries

The object of this paper is to establish one Fourier Bessel expansion for multi-
variable Aleph-function, I-function of several variables, Aleph-function of two vari-
ables and I-function of two variables. The multivariable Aleph-function generalize
the multivariable I-function recently study by C.K. Sharma and Ahmad [3]. The
generalized multivariable I-function is an a generalisation of G and H-functions of
multiple variables. The multiple Mellin-Barnes integral occuring in this paper will
be referred to as the multivariables Aleph-function throughout our present study
and will be defined and represented as follows.
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where j =1 to r and k=1 to r.
Suppose, as usual, that the parameters
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with k = 1tor, i = 1to R, i® =1 to R® are complex numbers, and the
a's, B's, 7v's and ¢'s are assumed to be positive real numbers for standardization
purpose such that
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The real numbers 7; are positive for i = 1 to R, 7 are positives for i*) =1 to
R®),
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The contour L is in the s, — p lane and run from ¢ — 100 to o + 0o where o is a

real number with loop, if necessary, ensure that the poles of F(dg-k) — 5](-k)sk) with

j =1 to my, are separated from those of I'(1 — a; + Z ;" sg) with j =1 to n and
=1

INOE cg-k) +7§-k)sk) with j = 1 to ny to the left of the contour L;. The condition for

absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained

by extension of the corresponding conditions for multivariable H-function given by

as;
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with k=1,....r,i=1,..,Rani® =1, .. R®.

The complex numbers z; are not zero. Throughout this document, we assume the
existence and absolute convergence conditions of the multivariable Aleph-function.
We will use these following notations in this paper
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The multivariable Aleph-function write
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2. Multiple Integral
We note
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The multiple integral to be evaluated is
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(b) |argz| < %AE’“)W, where AZ(-k) is defined by (1.5).

Proof

To establish (2.1), express the Aleph-function of several variables by the Mellin-
Barnes contour type integral (1.1), change the order of integrations (which is per-
missible under the stated conditions), evaluate the inner-integrals with the help
of [1, p.328, (10)]. Finally interpreting the result thus obtained with the Mellin-
Barnes contour integral, we arrive at the desired result.
3. Fourier Bessel Expansion

The Fourier series to the established
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Multiplying both sides of (3.2) by zy'..a; Jop vy 01(71) . Jop, +b, 41 () and inte-
grating with respect to zy,...,z, from 0 to oo and using (2.3) and orthogonality
property of the Bessel functions [2, p. 291, (5) and (6)], we obtain A,,, .. Sub-
stituting the value of A,,, . ., the result (3.1) is obtained.
4. Multivariable I-Function

If 7, = 7,00 = ... = 7;» = 1 the Aleph-function of several variables degenere to
the I-function of several variables. The Fourier Bessel expansion have been derived
in this section for multivariable I-functions defined by Sharma et al [3]. In these
section, we have the following expansion
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with the same conditions and notations that (2.3)
5. Aleph-Function of Two Variables

If r = 2, we obtain the Aleph-function of two variables defined by K. Sharma
[5], and we have the following Fourier Bessel expansion.
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6. I-Function of Two Variables

If , =7/ =71/ =1, then the Aleph-function of two variables degenere in the
I-function of two variables defined by Sharma et al [4] and we obtain
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valid under the same notations and conditions of (2.3) with r=2
7. Conclusion

The Aleph-function of several variables presented in this paper, is quite basic in
nature. Therefore, on specializing the parameters of this function, we may obtain
various other special functions o several variables such as multivariable I-function,
multivariable Fox’s H-function, Fox’s H-function, Meijer’s G-function, Wright’s
generalized Bessel function, Wright’s generalized hypergeometric function, Mac-
Robert’s E-function, generalized hypergeometric function, Bessel function of first
kind, modied Bessel function, Whittaker function, exponential function, binomial
function etc. as its special cases, and therefore, various unified integral presenta-
tions can be obtained as special cases of our results.
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