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1. Introduction
In [1] was deduced the following formula to obtain the number of physical
degrees of freedom (NPDF) for systems governed by singular Lagrangians:

1
NPDF:N—§(l+g+e) (1)

where only appear quantities from the Lagrangian formalism, in fact, N, e, 1, and g
are the total number of generalized coordinates ¢;(t), effective gauge parameters [1],
genuine constraints and gauge identities [2-5], respectively. This same calculation
can be realized with the Hamiltonian expression [6]:
1

NPDF:N—N1—§N2 (2)
using only concepts from the Rosenfeld-Dirac-Bergmann approach [6-14], where Ny
and N, are the total number of first-and second-class constraints, respectively; let’s
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remember that Ny is an even number [11, 15]. In [1] were established the relations:

l=N1+N2—N1(p)> 9:N1(p), e=MN (3)

being Nl(p ) the total number of first-class primary constraints, hence (1) implies
(2). On the other hand, it is useful to indicate the connections:

M =N —rankW®, 1=J—M+rankC, NP =M —rankC  (4)

where M is the amount of primary constraints (with M’ < M independent con-
straints), W](\?i ~ 1s the Hessian matrix, J = N; + N, represents the total number
of constraints, and Cyar = (¢4, Om).

In Sec. 2 we apply the matrix and canonical techniques to several Lagrangians
studied in [16-18], and thus to exhibit the validity of (1)-(4). To save comments
and notations it will be evident when certain quantities are satisfied on shell or on

the constraint surface (hence we shall eliminate the usual symbol = 0).

2. Daz-Higuita-Montesinos expression
Here we consider three Lagrangians whose matrix and canonical analysis allows
to show the application of the expressions (1)-(4).

|
L = dids + 54305 N =3. (5)
The Lagrangian method [2-5] gives the Hessian matrix
00 1
wO=100 0
1 00
whose rank is 2, with one gauge identity and two genuine constraints:
EY = —gags, O = g, ) = g, (6)

hence | = 2, g = 1, and the corresponding local gauge transformation has the
following structure:

- - B -
G = q1, g2 = q2 +e—, 43 = q3, e 1, (7)
4243
where [ is an arbitrary function, thus B is an effective gauge parameter, there-
fore e = 1. With the above information the formula (1) given by Daz-Higuita-
Montesinos implies that NPDF = 1.
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The Hamiltonian approach [8, 9] applied to (5) generates two constraints:
¢1 =ps Primary and ¢ = qq3 Secondary (8)

which are of second-class, but it is possible to construct the primary constraint gs¢,
of first-class, thus M = M =1, N; =1, Ny = 2, Nl(p) =1, J =3, and Cyy = O
because all Poisson brackets [19-21] {¢;, ¢.,} worth zero on the constraint region,
then rank C' = 0. With these canonical data the expression (2) implies that
NPDF =1, the same value as (1); besides, it is simple to verify the validity of (3)
and (4).

I
L=gsmd+aes, @#0, N=3 (9)

The matrix procedure and (9) lead to

WO —

o oo
o o
o oo

such that rank W = 1, with four genuine constraints and one gauge identity:

(071) — A

PO =gy, o2

(1,1) _

=q, oM =gqg—qg, e®Y=—g, E?EO) = —q, (10)

therefore 1 = 4, g = 1, and the gauge transformation takes the form:
. . . B
G =14q1, G2=qe, Q3—6]3+€q— (11)
2

hence e = 1 because we have one effective gauge parameter; in this case the formula
(1) gives NPDF = 0.
The Lagrangian (9) under the canonical method gives two primary constraints:

¢o1=p1 First —class, ¢o=p3 Second — class, (12)
and three second-class constraints:
¢3 =py Secondary, ¢4=qo Secondary, ¢5=qz Tertiary, (13)

then M =M =2, Ny =1, Ny =4, N =1, J = 5 and rank Cs,, = 1, thus from
(2) is immediate to deduce that NPDF = 0 in harmony with (1). The relations (3)
and (4) are verified by this set of values generated by the matrix and Hamiltonian
approaches.

1.
L= 5(@% +¢ig), N=2. (14)
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Now rank W(® = 1, with two genuine constraints and one gauge identity:

. 1
q1, ES)) - _éq%a (15>

(0,1) (1,1) _

¥ =q1, ¢

that is, | = 2, g = 1, and the gauge transformation is given by:

- _ Q@
G =q, G@=¢@tcs (16)
a4

therefore e = 1; here NPDF = 0 via the Daz-Higuita-Montesinos formula.

For (14) the Hamiltonian formalism leads to one primary, one secondary and one
tertiary constraints:

01 =po First—class, ¢ =q1 Second—class, ¢3=p; Second— class,

(17)

such that M = M =1, Ny =1, Ny =2, N¥) =1, J = 3, and rank Cs,; = 0; thus
(2) produces the same value as (1), and (3) and (4) are satisfied.

The aim of this work was to show the use of the relations (1)-(4) with the

corresponding set of values from the Lagrangian and Hamiltonian formalisms, and
to exhibit the compatibility between the mentioned expressions.
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