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Abstract: Given a hypergraph H = (X, E), an integer k ≥ 1 and a property P ,
of subsets of X, a (P , k)-coloring of H is a function π : X → {1, 2, . . . , k}=: k such
that for all i ∈ k the induced subhypergraph 〈π−1(i)〉H ∈ P̄ , where P̄ denotes the
set of all subsets of X that do not possess the property P . The hypergraph H
is (P , k)-colorable if and only if it has a (P , k)-coloring. The P-chromatic number
χP(H) of H is then defined as the least k such that H has a (P , k)-coloring. In this
note, we initiate a study of χP(H) for hereditary properties P . For non-hereditary
properties, the study appears challenging.
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1. Introduction
For all terminology and notation in the theories of graphs and hypergraphs

we refer the reader to Harary [5] and Berge [4], respectively. The hypergraphs
considered here are more general in that, unlike in [4], they may have isolates, that
is, the set Y of vertices that are not contained any edge of the hypergraph; this
fundamental difference was first noticed and hypergraphs were treated accordingly
in [1].

Hypergraphs are a natural generalization of undirected graphs in which edges
may consist of more than 2 vertices. More precisely, a (finite) hypergraph H =
(V,E) is a pair {X,H} where H = {E1, E2, . . . , Eq} is a set of subsets of X such
that Ei 6= ∅ for all i, and

⋃q
i=1 Ei = X, consisting of p vertices and q edges; if p = 0

then H is called the null hypergraph and is denoted by K0. The elements of V are
called vertices and the elements of E are called hyper- edges, or simply edges of



22 J. of Ramanujan Society of Math. and Math. Sc.

the hypergraph. A subset S of vertices of H is a clique if every two vertices in S
are adjacent in H. Thus, it follows that every nonisolated vertex in H is a clique
in H; clearly, every subset of a clique is again clique in H. If a hypergraph H
has a clique of order p = |X(H)| then it is said to be complete and such a graph
is denoted by Kp. Clearly, the complete graph Kp ∈ Kp. Note that K1, by the
definition of a complete hypergraph, is the hypergraph with just one vertex, say
x, and just one edge, viz., {x}; in general, each such edge, with just one vertex, in
any hypergraph is called a self-loop.

Two vertices u and v are adjacent in H = (V,E) if there is an edge e ∈ E such
that u, v ∈ e. If for two edges e, f ∈ E holds e ∩ f 6= ∅ , we say that e and f
are adjacent. A vertex v and an edge e of H are incident if v ∈ e. The degree
deg(v) of a vertex v ∈ V is the number of edges incident to v. The maximum degree
maxv∈V deg(v), is denoted by 4(H).

The rank of a hypergraph H = (V,E) is r(H) = maxe∈E |e|, the anti- rank
is s(H) = mine∈E |e|. A uniform hypergraph H is a hypergraph such that
r(H) = s(H). A simple uniform hypergraph of rank r will be called r-uniform. A
hypergraph with r(H) ≤ 2 is a graph. A 2-uniform hypergraph is usually known
as a simple graph.

In this paper, we only consider hypergraphs without multiple edges and thus,
being E a usual set. If there is a risk of confusion we will denote the vertex set
and the edge set of a hypergraph H explicitly by V (H) and E(H), respectively.

A hypergraph H = (V,E) is simple if no edge is contained in any other edge and
|e| ≥ 2 for all e ∈ E. The dual H∗ of a hypergraph H = (V,E) is the hypergraph
whose vertices and edges are interchanged, so that V (H∗) = {e∗i : ei ∈ E} and
edge set E(H∗) = {v∗i : vi ∈ V } with v∗i = {e∗j : vi ∈ ej}

A partial hypergraph is obtained by removing a certain number of edges, and re-
moving the nodes that no longer belongs to any hyperedge. Let J ⊂ {1, 2, . . . ,p(H)}
and H = {E1, E2, . . . , Eq} a hypergraph. Then the partial hypergraph H ′ is:
H ′ = {Ej : Ej ∈ J}. In contrast a sub-hypergraph is obtained by removing a
subset of the nodes in X, which might result in the removal of edges but in general
reduces their size. If A ⊂ X where X is the node-set belonging to H, p(H) = p
then HA = {Ej

⋂
A : 1 ≤ j ≤ p, Ej

⋂
A 6= ∅}. Thus the partial hypergraph of H is

equal to the sub-hypergraph of the dual hypergraph H∗ and vice versa. The partial
hypergraph H ′ = (V ′, E ′) is induced if E ′ = {e ∈ E|e ⊆ V ′}. Induced hypergraphs
will be denoted by 〈V ′〉.

The set S ⊆ V is independent if it contains no edge of E; the maximum
cardinality of an independent set is denoted by β(H) and is called the independence
number of H. Some of the older literature, [6, 9] use the term stable and stability
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number for this concept.
A coloring of a hypergraph H is mapping c from either V or E into a set of

colors C = {1, . . . , k}. We refer to c : E → C as an edge-coloring and to c : V → C
as a vertex-coloring or simply coloring. A proper coloring of a hypergraph H is a
coloring c : V → C such that {v : c(v) = i} is an independent set for all i ∈ C.
The chromatic number χ(H) is the minimal number of colors that admit a proper
coloring of H. Hence, the chromatic number χ(H) is the minimum number of
independent sets V1, . . . , Vχ(H) into which V can be partitioned. A proper strong
coloring of a hypergraph H is a proper coloring such that for all edges e ∈ E holds
that c(v) 6= c(w) for all distinct vertices v, w ∈ e. The strong chromatic number
χs(H) is the minimal number k of colors that admit a strong k-coloring of H.

A graph property P is hereditary if whenever a graph G obeys P , then all
induced subgraphs of G obey P also.

Let H denote the set of all finite hypergraphs. A subset P of H is a property if
and only if K0, K1 ∈ P ; it is hereditary if and only if H ∈ P and K � H (that is, K
is a subhypergraph of H) imply that K ∈ P ; and nontrivial if and only if P 6= H.
Clearly, every hereditary hypergraph as defined by Berge [4] is a member of any
hereditary property P and conversely every member of any hereditary property P is
a hereditary hypergraph. If H is any hypergraph with at least two vertices, the set
−H = {K ∈ H : H 6� K} is a hereditary property and any K ∈ −H is said to be
H-free. More generally, if F ⊆ H and K0, K1 6∈ F then the set −F =

⋂
F∈F(−F )

is a hereditary property.
Next, given a hypergraph H = (X, E) with ς(H) := {i ∈ N : ∃E ∈ E such that

|E| = i}, N being the set of natural numbers, we define

H̄ = (X,
⋃

i∈ς(H)

{Xi(H) \ E : E ∈ E}),

where Xi(H) = {A ⊆ X : |A| = i}, is called the complement of H; for example, K̄1

is the trivial hypergraph that consists of just one isolated vertex. Further, if H is
a graph then ς(H) = {2}, whence it is easy to see that H̄ is the usual complement
of the graph H. Furthermore, if P is a property then, P̄ = {H̄ : H ∈ P} is a
property and if P is hereditary so is P̄ . Also, if P = −H then P̄ = −H̄.

Given a hypergraph H = (X, E), an integer k ≥ 1 and a property P , of the
subsets of X, a (P , k)-coloring of H is a function π : X → {1, 2, . . . , k} =: k such
that for all i ∈ k the induced subhypergraph 〈π−1(i)〉H ∈ P̄ ; hence any (P , k)-
coloring π : X → k of H may be viewed as a partition P = {X1, X2, . . . , Xk} of
X(H) such that for each i ∈ k, X consists of the vertices that are colored by
the paint i in which every set Xi is a P̄-set. H is (P , k)-colorable if and only if it
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has a (P , k)-coloring. χP(H) denotes the least positive integer k such that H is
(P , k)-colorable. Clearly,

χP(H) ≤ χs(H) ≤ |X(H)| (1)

ρP(H) ≤ ωP(H) ≤ χP(H) ≤ χ(H) ≤ |X(H)|, (2)

where ρP(H) = max.{|E| : E ∈ E ∩ P} is called the P-rank of H and ωP(H)
denotes the largest order of a clique in H having the property P , or, what we shall
call a P-clique of H.

Remark 1.1: Insisting the null hypergraph K0 to be in P ensures that any (P , k)-
colorable hypergraph is (P ,m)-colorable for m ≥ k.

Remark 1.2: Insisting that K1 ∈ P ensures χP(H) ≤ |X(H)| for any hypergraph
H, since coloring each vertex with a different color is clearly a P-coloring. In
particular, χP(H) is always well defined.

Remark 1.3: If P is hereditary, then the restriction of any (P , k)-coloring of
a hypergraph H to a subhypergraph K is a (P , k)-coloring of K so that K � H
implies χP(K) ≤ χP(H).

Remark 1.4: For any property P and hypergraph H, it follows from the definition
that

〈S〉H ∈ P̄ ⇔ 〈S〉H̄ ∈ P (3)

so that a (P̄ , k)-coloring of H is a (P , k)-coloring of H̄.
In this note, we initiate a study of (P , k)-colorings of a finite hypergraph and

establish a few of their fundamental properties, especially related to the notion of
domination in hypergraphs (e.g., see [2, 3]).

2. An upper bound for χP(H)
A natural question to ask is whether there are ‘good’ bounds for χP(H). The

following theorem shows that

max.{χ(H), χ(H̄)}

is such an upper bound for certain hereditary properties, where χ(H) denotes the
usual weak chromatic number of H, defined as the least positive integer k such that
one can paint the vertices of H in such a way that every edge of H has at least two
vertices of different colors.
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Theorem 2.1 Let P be a hereditary property. Then χP(H) ≤ max.{χ(H), χ(H̄)}
for all hypergraphs H if and only if −K2 ⊇ P or −K̄2 ⊇ P.
Proof: If −K2 ⊇ P then any usual k-coloring of H is a (P , k)-coloring of H, so that
χP(H) = χ(H). If −K̄2 ⊇ P then −K2 ⊇ P̄ , so that χP(H) = χP̄(H̄) ≤ χ(H̄).
Hence, χP(H) ≤ max.{χ(H), χ(H̄)}.

Conversely, if −K2 6⊇ P , then as P is hereditary there must exist complete
hypergraphs S = Kn, n ≥ 2 such that S, S̄ 6∈ P . Let m = n(n − 1) and M
be the disjoint union of m copies M1, M2, . . . ,Mm of a hypergraph Km. Then,
χ(M) = χ(M̄) = m, if at least one of the Mi is the complete graph Km. Now,
assume that M is (P ,m)-colorable and that π : X(M) → m is such a coloring.
Then, as S 6∈ P and χ(S) = n every Mi must be colored with at least n colors
so that

∑m
i=1 |π−1(i)| ≥ mn. However, as S̄ 6∈ P no color can appear on more

than n − 1 of the Mis, so that
∑m

i=1 |π−1(i)| ≤ m(n − 1), a contradiction. Thus,
χP(H) > m = max.{χ(H), χ(H̄)}. Thus, the proof is seen to be complete by
contraposition.

It is obvious that the bound is attained by any complete hypergraph Kp and
for any hereditary property P . The problem of finding bounds for χP(H) when P
is not hereditary is open.

3. Relation with notions of stability
The set S is stable if it does not contain any edge E with |E| > 1 and the

stability number α(H) of H is defined as the maximum cardinality of a stable set
in H. On the other extreme is the notion of a strongly stable set S in which no
two vertices are allowed to be adjacent; in standard graph theory literature, the
term independent set is used to mean a strongly stable set and hence we will use
the same term for a strongly stable set in a hypergraph. The maximum cardinality
of an independent set in H is called its independence number and is denoted β(H).
Clearly, since the set Sα(H) of all maximal stable sets inH contains the set Sβ(H) of
all maximal independent sets in H it follows that α(H) ≥ β(H) for any hypergraph;
also, if H is a graph then equality holds. Given a hypergraph H = (X, E) and a
property P of the subsets of X(H) := X, a subset S of X(H) is said to be P-stable
if

E ∈ E , E ∈ P and |E| > 1⇒ |E ∩ S| ≤ 1. (4)

One may easily note that strongly stable ⇒ P -stable ⇒ (weakly) stable.

Definition 3.1 Given any property P of the subsets of a nonempty set X, a hy-
pergraph H = (X, E) is P-hereditary if for every edge E in H every subset of E
also has property P
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Lemma 3.2 Let H = (X, E) be any P-hereditary hypergraph where P is a prop-
erty of the subsets of X(H) such that P̄ is hereditary. Then, in any (P , k)-coloring

P = {X1, X2, . . . , Xk}

of H, every set Xi is a P-stable set of H.
Proof: Suppose Xi is not a P-stable set of H for some i ∈ k . Then, by definition, it
follows that there exists an edge E ∈ E such that E ∈ P , |E| > 1, and |E∩Xi| ≥ 2.
Let x, y ∈ E∩Xi. since H is P-hereditary and x, y ∈ E we have {x, y} ∈ P whereas
since x, y ∈ Xi and Xi is a P̄-set where P̄ is a hereditary property we get {x, y} ∈ P̄
which contradicts the previous deduction. Thus, the result follows.

Lemma 3.3 Let H = (X, E) be any hypergraph and P be a hereditary property
of the subsets of X(H). Then, in any (P , k)-coloring P = {X1, X2, . . . , Xk} of
H with k = χP(H), for every two distinct colors i, j ∈ k there is an edge of H
intersecting both Xi and Xj.
Proof: Suppose the result is false. Then, under the hypotheses, H has a (P , k)-
coloring P = {X1, X2, . . . , Xk} of H with k = χP(H), in which there are two
distinct colors i, j ∈ k such that no edge of H intersects both Xi and Xj; without
loss of generality, we may assume 1 ≤ i < j ≤ k. Then, it is not difficult to verify
that

P ′ = {X1, X2, . . . , Xi−1, {Xi ∪Xj}, Xi+1, Xi+2, . . . , Xj−1, Xj+1, Xj+2, . . . , Xk}

is a (P , k − 1)-coloring of H, a contradiction to the minimality of k. Thus, by
contraposition, the result is seen to hold.

Next, let βP(H) denote the largest cardinality of a P-stable set in H. Then,
for any (P , k)-coloring P = {X1, X2, . . . , Xk} of H with k = χP(H), we must have
|Xi| ≤ βP(H), ∀i, 1 ≤ i ≤ k whence we get |X(H)| =

∑k
i=1 |Xi| ≤ k × βP(H).

Thus, we have
|X(H)|
βP(H)

≤ χP(H).

On the other hand, taking any P-stable set S consisting of βP(H) vertices in H
we may construct a (P , k)-coloring by painting all the vertices of S by one color,
say c1, and the remaining |X(H)|−βP(H) vertices by so many distinct colors each
different from c1; we would have thus used |X(H)| − βP(H) + 1 distinct colors in
all. Existence of this coloring implies

χP(H) ≤ |X(H)| − βP(H) + 1.
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Thus, we have the following refinement of the bound in Theorem 2.1 for any P-
hereditary hypergraph H, where P is a property of subsets of X(H) such that P̄
is hereditary.

|X(H)|
βP(H)

≤ χP(H) ≤ |X(H)| − βP(H) + 1. (5)

Further, we have the following result as a consequence of Lemma 3.2 and Theorem
2.1

Proposition 3.4 Let H be a P-hereditary hypergraph where P is a property
of the subsets of X(H) such that P̄ is a hereditary and such that −K2 ⊆ P or
−K̄2 ⊆ P. Then

|X(H)|
βP(H)

≤ χP(H) ≤ min.{max.{χ(H), χ(H̄)}, |X(H)| − βP(H) + 1}. (6)

4. Relation with domination
Let H = (X, E) be any hypergraph, P be a property of the subsets of X(H)

and D ⊆ X(H). We refer to D as a P-dominating set of H if D is a P-set and

N(x) ∩D 6= ∅ ∀x ∈ X −D, (7)

where N(x) = {y ∈ X(H) : ∃E ∈ E with x, y ∈ E} is called the vertex neighbor-
hood of x in H.

Remark 4.1 P -dominating implies dominating.
The following known result will be useful to us.

Lemma 4.2 (Acharya, 2001 [2]) For any hypergraph H = (X, E) and for any
property P of the subsets of X(H), the property D of the subsets of X(H) being
dominating is superhereditary in the sense that every superset of a dominating set
in H is a dominating set of H.

We can now establish the following generalization of a fundamental result of
Berge (1973 [4]) in the theory of domination in graphs (also, see Walikar et al.
1979 [10, 11]; Haynes et al, 1997 [7]).

Lemma 4.3 Let P be a property of a nonempty set X such that P̄ is hereditary. If
H = (X, E) is a P-hereditary hypergraph then every strongly P-stable P-dominating
set is a maximal strongly P-stable set. Conversely, for any hypergraph H and
for any property P every maximal strongly P-stable set in H is a minimal P-
dominating set.
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Proof: To prove the first part of the theorem, let S be any strongly P-stable P-
dominating set in H. Then, there exists a maximal strongly P-stable set T in H
such that S ⊆ T . If S = T then we are through. Hence, let S ⊂ T . Then, since S is
a P-dominating set in H there exists (in fact, for every) vertex y ∈ T \S such that
N(y) ∩ S 6= ∅. Therefore, there exists x ∈ S such that x and y are adjacent in H.
This implies, there exists an edge E ∈ E such that x, y ∈ E. Since, by hypothesis,
H is a P-hereditary hypergraph, every subset of E must be a P-set and hence
the set {x, y} is a P-set. However, since {x, y} ⊆ T we get a contradiction to our
assumption that T is a strongly P-stable set. Thus, S must be a maximal strongly
P-stable set of H.

For the converse, let S be a maximal strongly P-stable set in H. If S is not a P-
dominating set of H there would exist a vertex x ∈ X(H)\S such that N(x)∩S = ∅
according to the definition. But, then, S ∪ {x} would be a strongly P-stable set of
H, contrary to our assumption that S is a maxiamal strongly P-stable set of H.
So, S is a P-dominating set of H.

Next, suppose S is not a minimal P-dominating set of H. This would imply
existence of a nonempty proper subset A of S that is a P-dominating set of H. Now,
since A is a proper subset of S there exists y ∈ S \A. Since A is P-dominating, by
definition, for every x ∈ X \ A there exists w ∈ A such that x and w are adjacent
in H. In particular, since S \ A is a subset of X \ A we have for y ∈ S \ A there
is a ∈ A such that a, y ∈ E for some E ∈ E . Also, since a ∈ A ⊂ S we get
a, y ∈ E ∩ S, a contradiction to the strong P-stability of S.
This completes the proof.

We are now ready to establish the main result of this section, which generalizes
a recent fundamental result obtained by Walikar, et al. (2004 [11]).

Theorem 4.4 Let H = (X, E) be any hypergraph. For a property P such that P̄
is hereditary, let P = {X1, X2, . . . , Xk} be any (P , k)-coloring of the vertices of H,
where k = χP(H). Then, either one of the sets in P is a P-dominating set of H
or P can be transformed into a (P , k)-coloring P ′ of H in which one of the color
classes is a P-dominating set of H.
Proof: Suppose none of the sets in P is a P-dominating set of H. Then, choose
any of the sets in P , say X1. Since it is not P-dominating, there exists y ∈ X \X1

such that N(y) ∩ X1 = ∅. Clearly, if X1 ∪ {y} is a maximal strongly P-stable
set, then it must be a P-dominating set in H by Lemma 4.3. and if y ∈ Xj then
P ′1 = {X1 ∪ {y}, X2, . . . , Xj \ {y}, Xj+1, . . . , Xk} is a (P , k)-coloring of H and we
are through because Xj \ {y} must contain a vertex z adjacent to some vertex in
X1 due to minimality of k, vide Lemma 3.2. If X1 ∪ {y} is not a maximal strongly
P-stable set of H then there exists z ∈ X \ (X1 ∪ {y}) such that X1 ∪ {y, z} is a
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strong P-stable set in H. If z ∈ Xj \ {y} then there would still exist a vertex w in
it such that w is adjacent to some vertex in X1 since the coloring is complete as
k = χP(H) by virtue of Lemma 3.2; clearly, therefore, w 6= z.

Thus, P ′2 = {X1∪{y, z}, X2, . . . , Xj\{y, z}, Xj+1, . . . , Xk} is a (P , k)-coloring of
H. On the other hand, if z 6∈ Xj\{y} then x ∈ Xr for some unique r 6= j, 1 ≤ r ≤ k
since P is a partition of X(H); without loss of generality, we may assume r < j.
We may repeat the argument for Xr as in the case of Xj above to conclude that
P ′3 = {X1∪{y, z}, X2, . . . , Xr \{z}, . . . , Xj \{y}, . . . , Xk} is a (P , k)-coloring of H.

If X1∪{y, z} is a maximal strongly P-stable set of H (and hence a P-dominating
set) of H, continuing in this manner, since H is finite, it follows that we must
eventually obtain a (P , k)-coloring of H in which one of the color classes is a
maximal strongly P-stable set set (which must be a P-dominating set) of H. Thus,
the proof is seen to be complete.

Let γP(H) denote the least cardinality of a P-dominating set in H. Theorem
4.4 leads to the following result, which yields a new inequality in the theory of
domination in hypergraphs.

Corollary 4.5 Let H = (X, E) be any hereditary hypergraph where P is a property
of the subsets of the vertex set of X(H) such that P̄ is hereditary. Then

γP(H) + χP(H) ≤ p+ 1.

In particular, if P is the property of the subsets of X(H) being strongly stable
(or, independent), that is,

S ⊂ X(H), |S| > 1⇒ |E ∩ S| ≤ 1 ∀ E ∈ E , (8)

or being weakly stable in the sense that

S ⊂ X(H), |S| > 1⇒ E 6⊂ S ∀E ∈ E , (9)

(see Berge, 1973) then Corollary 4.5 implies

γsi(H) + χs(H) ≤ p+ 1 (10)

and

γwi(H) + χw(H) ≤ p+ 1, (11)

respectively, where γsi(H) := γi(H) is the independent domination number of H
and γwi(H) is the weakly stable domination number of H. The bounds in the above
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inequalities are all attainable.

5. Relation with enclaveless sets
Given a property P of the subsets of a nonempty set X and S a set of vertices

in a hypergraph H = (X, E), S is P- enclaveless (or, P-full; cf. Acharya, 2002 [1])
if

NP(x) ∩ (X \ S) 6= ∅, ∀x ∈ S (12)

where

NP(x) = {y ∈ X : ∃ E ∈ E with E ∈ P and x, y ∈ E} (13)

and x and y are called P-adjacent if there exists a P-edge E of H such that x, y ∈ E.
(see Slater, 1977 [8]). Let Ex denote the set of edges in H that contain x called the
edge neighbourhood of x. A property P of the subsets of X(H) acts locally on H if
it contains at least one edge from the edge neighbourhood of each vertex of H.

Remark 5.1 P -enclaveless implies dominating and P -dominating implies domi-
nating, but P - enclaveless and P -dominating are independent concepts.

The following result is a variation of a known result (cf. Acharya, 2002 [1]).

Proposition Let H = (X, E) be a hypergraph and P be any hereditary property of
the subsets of X(H) acting locally on H. Then, every P-stable set in H is P-full.
Proof: Let S be any P-stable set in H and suppose that it is not P-full. Then,
there exists x ∈ S such that NP(x) ∩ (X \ S) = ∅. Since P acts locally at every
vertex of X there exists a P-edge E containing x such that E ⊂ S. Since P is
hereditary, every subset of E, is also in P . Therefore, if |E| = 1 there is nothing
to prove. Hence, if |E| > 1 then E 6⊂ S because S is P-stable. Thus, we get a
contradiction.

It is not difficult to construct counterexamples to show that the converse of
Proposition 5.2 is not true. The following is a straightforward consequence of
Proposition 5.2.

Corollary 5.3 Let H = (X, E) be a hypergraph and P be any hereditary property
of the subsets of X(H) acting locally on H. Then, βP(H) ≤ fP(H), where fP(H)
denotes the largest cardinality of a P-full set in H.

The inequality in Corollary 5.3 can be used to refine (3) in certain special cases
as the following consequence of Corollary 5.3 shows.

Corollary 5.4 For any hypergraph H = (X, E) which is locally acted upon by a
hereditary property P of the subsets of X(H) such that −K2 ⊆ P or −K̄2 ⊆ P,

|X(H)|
βP(H)

≤ χP(H) ≤ min.{max.{χ(H), χ(H̄)}, |X(H)| − fP(H) + 1}. (14)
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Conclusions and scope
As pointed out already, study of the hypergraph properties and parameters

discussed in this article need to be pursued in the case of properties which are
not hereditary in general. Even in the case of hereditary properties, certain ex-
ceptions have been made in the above study and in those exceptional cases too
specific studies are necessary to be carried out. Extensions of the property-loaded
chromaticity of hypergraphs to the case of weighted hypergraphs are a wider area
of investigation and there is a near-future possibility of the results in this direction
being useful for real-life applications, especially in mathematical programming and
social psychology (e.g., see Acharya, 2002, 2003). Lastly, extensions by replacing
“hereditary” throughout in the foregoing text by “supra-hereditary” (see [3]) are
possible.
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