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Abstract: In the present paper we have obtained a new model by using the
Tewari [1] algorithm for a collapsing radiating star and the matching conditions
required for the description of physically meaningful fluid. The interior matter
fluid is shear-free spherically symmetric isotropic and undergoing radial heat flow.
The interior metric obeyed all the relevant physical and thermodynamic conditions
and matched with Vaidya exterior metric over the boundary. Initially the interior
solutions represent a static configuration of perfect fluid which then gradually starts
evolving into radiating collapse. The apparent luminosity as observed by the distant
observer at rest at infinity and the effective surface temperature are zero in remote
past at the instant when the collapse begins and at the stage when collapsing
configuration reaches the horizon of the black hole.
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1. Introduction
When a body does not have substantially strong pressure gradient force, it

may continue collapsing because of its own gravity, this phenomena is called grav-
itational collapse. It is one of the important issues in relativistic astrophysics
whether the end state of gravitational collapse is a black hole or a naked singular-
ity (Joshi and Malafarina [2] and references therein). In relativistic astrophysics, a
detailed description of gravitational collapse of massive stars and the modeling of
the structure of compact objects under various conditions is the most interesting
phenomena.The study of the gravitational collapse was started by Oppenheimer
and Snyder [3], in which they assumed a spherically symmetric distribution of state
in the form of dust with Schwarzschild exterior. Later on taking into account the
outgoing radiation from collapsing spherical fluid Vaidya [4] initiated the problem
and the modified equations proposed by Misner [5] for an adiabatic distribution of
matter.
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It is an established fact that gravitational collapse is a high energy dissipating
process (Herrera and Santos [6]; Herrera et al. [7]; Mitra [8] and references therein)
which plays a dominant role in the formation and evolution of stars. However, the
dissipation of energy from collapsing fluid distribution is described in two limiting
cases. The first case describes the free streaming and a number of models of
radiating stars in this case discussed by Tewari ([9]-[12]). While second one is
diffusion approximation and in this case the dissipation is modeled by heat flow type
vector and in this the model proposed by Glass [13] has been extensively studied by
Santos [14] for the junction conditions of collapsing spherically symmetric shear-free
non-adiabatic fluid with radial heat flow. On a similar ground a number of stellar
models [de Oliveira et al. [15]; Bonnor et al. [16]; Banerjee et al. [17]; Herrera
et al. [18]; Tewari [19]; Sharif and Abbas [20]; Tewari and Charan ([21]-[23]) and
also references therein have been reported with the impact of various dissipative
processes on the evolution.

Keeping in view of generality of solution due to Tewari [1] we present a special
solution and its detailed study, in order to construct a realistic model of collapsing
radiating star. The interior space-time metric is matched with Vaidya exterior
metric [4] over the boundary, and the final fate of our model is formation of a
black hole. The paper is organised as follows: In sec. 2 the field equations and the
junction conditions which match the interior metric of the collapsing fluid with the
exterior metric are given. In section 3 a new class of exact solutions of the field
equations are presented. In section 4 a detailed study of a class of solutions for a
collapsing radiating star is given and finally in section 5 some concluding remarks
have been made.

2. The field equations and junction conditions
The metric in the interior of a shear-free spherically symmetric fluid distribution

is given by

ds2
− = −A2(r, t)dt2 +B2(r, t){dr2 + r2(dθ2 + sin2 θdφ2)} (1)

The energy-momentum tensor for the matter distribution with isotropy in pressure
is

Tµν = (ε+ p)wµwν + pgµν + qµwν + qνwµ (2)

where ε is the energy density of the fluid, p the isotropic pressure, wµ is the four
velocity and qµ the radial heat flux vector. Assuming comoving coordinates, we
have wµ = δµ0 . The heat flow vector qµ is orthogonal to the velocity vector so that
qµwµ = 0 and takes the form qµ = qδµ1 .
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The line element (1) corresponds to shear- free spherically symmetric fluid (Glass
[24]), as the shear tensor vanishes identically. The fluid collapse rate Θ = wµ;µ of
the fluid distribution (1) is given by

Θ =
3Ḃ

AB
(3)

Non-trivial Einsteins field equations in view of (1) and (2) are given by following
system of equations
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here and hereafter the primes and dots stand for differentiation with respect to r and
t respectively. The coupling constant in geometrized units is κ = 8π(i.e.G = c = 1).

The exterior space-time is described by Vaidyas exterior metric [4] which represents
an outgoing radial flow of radiation

ds2
+ = −

(
1− 2M(v)

R

)
dv2 − 2dRdv +R2(dθ2 + sin2 θdφ2) (8)

where v is the retarded time and M(v) is the exterior Vaidya mass.

The junction conditions for matching two line elements (1) and (8) continuously
across a spherically symmetric time-like hyper surface Σ are well known and ob-
tained by Santos [14]

(rB)Σ = RΣ(v) = R(τ) (9)

(pr)Σ = (qB)Σ (10)

mΣ(r, t) = M(v) =

{
r3BḂ2

2A2 − r2B′ − r3B′2

2B

}
Σ

(11)
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where mΣ is the mass function calculated in the interior at r = rΣ (Cahill et al.
[25], Misner and Sharp [26]).

Some other characteristics of the model such as the surface luminosity and the
boundary redshift zΣ observed on Σ are

LΣ = κ
2
{r2B3q}Σ (12)

zΣ =
[
1 + rB′

B
+ rḂ

A

]−1

Σ
− 1 (13)

The total luminosity for an observer at rest at infinity is

L∞ = −dM
dv

=
LΣ

(1 + zΣ)2
(14)

3. Solution of the field equations
In order to solve the field equations we choose a particular form of the metric

coefficients given in (1) into functions of r and t coordinates as A(r, t) = A0(r)g(t)
and B(r, t) = B0(r)f(t).

In view of the above metric coordinates the Einstein’s field equations (6)-(9) lead
to the following system of equations

κε = ε0
f2 + 3ḟ2
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− ḟ2

f2

)
(16)

where

ε0 = − 1
B2

0

(
2B′′0
B0
− B′20

B2
0

+
4B′0
rB0

)
(17)

p0 = 1
B2

0

(
B′20
B2

0
+

2B′0
rB0

+
2A′0B

′
0

A0B0
+

2A′0
rA0

)
(18)

here the quantities with the suffix 0 corresponds to the static star model with
metric components A0(r), B0(r).

In the absence of dissipative forces the equation (10), (p)Σ = (qB)Σ, reduces to the
condition [p0]Σ = 0 and yields at r = rΣ = RΣ

2f̈

f
+
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− 2ġḟ
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f 2
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where

α =
(A′0
B0

)
Σ

(20)

To solve the equation (19), by assuming g(t) = f(t) (Tewari [1]) obtained the
following solution

ḟ = −2α
√
f(1−

√
f) (21)

t = 1
α
ln(1−

√
f) (22)

We observed that the function f(t) decreases monotonically from the value f(t) = 1
at t = −∞ to f(t) = 0 at t = 0.

The isotropy of pressure would give the equation
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where the quantities with the suffix 0 corresponds to the static star model metric
components A0(r), B0(r).

The new parametric class of solutions of equation (23) obtained by Tewari [1] is

A0 = D2(1 + C1r
2)

n
l+1 +D1(1 + C1r

2)
2−n
l+1

+1 (24)

B0 = C2(1 + C1r
2)

1
l+1 (25)

n =
1

2

{
(l + 3)± (l2 + 10l + 17)

1
2

}
(26)

where n, l, C1, C2, D1 and D2 are constants and n is real if l ≥ −5 + 2
√

2 or
l ≤ −5− 2

√
2.

One can arrive at a number of solutions for different values of n from above class
of solutions. When n = 0 , we rediscover the Schwarzschild interior solution and
dissipative collapsing model in this case has been studied by de Oliveira et al. [15]
and Bonner et al. [16]. When n = −1 ,it reduces into Banerjee et al. [17] solution,
for n = −2,−3/2 , it reduces to Tewari ([19], [1]), for n = −1 −

√
2, horizon-free

case studied by Tewari and Charan [21] and one more case for n = −5/3 discussed
in detail by Tewari and Charan [22] in which they present a Supernovae model.

4. Physical analysis of the model
In order to construct the new realistic model we assume n = −6/5 and, from

(24) and (25) we obtain,

A0 = D2(1 + C1r
2)

6
71 +D1(1 + C1r

2)
55
71 (27)
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B0 = C2(1 + C1r
2)
−5
71 (28)

In view of (27) and (28) the equations (17) and (18) reduces in following expressions
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The junction condition [p0]Σ = 0 gives
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2
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2
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We observed that ε0 > 0, p0 > 0, p0

ε0
< 1, ε′0 < 0, p′0 < 0 at the centre are satisfied

with suitable choice of constants C1 > 0, C2 > 0, D2 > 0, D1 < 0 and D2 > −50D1.

The total energy inside Σ for the static system
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10C1C2r

3
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Now the explicit expressions for ε, p, q, and Θ become
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where
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α = −490
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We can see the physical parameters ε, p, q are finite, positive monotonically de-
creasing at any instant with respect to radial coordinate for 0 ≤ r ≤ rΣ . Initially
collapse is zero and it becomes infinite at final phase of the configuration.

The total energy entrapped inside Σ is given by
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The luminosity and the red shift observed on Σ and luminosity observed by a
distant observer are given by
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The above expressions show that L∞ vanishes in the beginning whenf(t)→ 1 and
at the stage whenzΣ →∞.

We obtain the black hole formation time as√
fBH =
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2
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2
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and
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The effective surface temperature observed by external observer can be calculate
similar as Tewari [1]
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T 4
Σ = 200

5041πδC2
2

C2
1r

2
Σ(71+66C1r2

Σ)
2

(1+C1r2
Σ)

132
71 (71+61C1r2

Σ)2

(1−
√
f)

f
5
2

1
(1+zΣ)2 (44)

where the constant δ in Photon is given by

δ =
π2k4

15~3
(45)

where k and ~ denoting respectively Boltzmann and Plank constants.

The temperature inside the star is given by Tewari [1]
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It follows that the surface temperature of the collapsing star tends to zero at the
beginning of the collapse [f → 1] and the stage of formation of black hole [zΣ →∞].

5. Conclusion
We have presented a new simple model corresponding to n = −6/5 of Tewari

[1]. The model is physically and thermodynamically sound as it corresponds to
well-behaved nature for the fluid density, isotropic pressure and radiation flux den-
sity throughout the fluid sphere. Initially the interior solutions represent a static
configuration of perfect fluid which then gradually starts evolving into radiating
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collapse. The apparent luminosity as observed by the distant observer at rest at
infinity is zero in remote past at the instance when collapse begins and at the stage
when collapsing configuration reaches the horizon of the black hole. The surface
temperature and the temperature inside the star of the collapsing body is zero at
the beginning and become infinite at the final phase of the configuration. We have
a number of applications of our work i.e. one can construct models of Quasar,
Supernovae, Black holes and various high energy astronomical objects.
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