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1. INTRODUCTION

Let > denote the class of meromorphic functions of the form

1 o¢]
= — nZ" n >0, e N), 1.1
2) Z—i—;az (a n € N) (1.1)

which are analytic and univalent in the punctured unit disk A* ={z: 0<|z| <

1}.
For f(z) € 5, Ghanim and Darus [3] were defined a linear operator I* (k =
0,1,2,...) as follows:

IFf(z) = 2(I" M f(2)) + 2 = 2+ 5 nbanz" '
For A=B+(C—-B)(1-D),-1<B<C<1land0<D <1, welet >,
consists of function f € > satisfying the condition
_zF(4)(z) _ 1+ Az
F"(z) 1+ Bz’
where F(z) = I*f(2) is defined by (1.2).

For other subclass of meromorphic univalent functions, we can see the recent works
of many authors in [1] and [2].

(1.3)
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2. MAIN RESULTS

In this section we find sharp coefficient bounds and Integral representation for
the class 3% 5.

Theorem 2.1. Let f(z) € Y, then f(z) € Z’;,B if and only if

+inkﬂ(n—1)(n—2)[Qn—5+4(B+(0-B)(1—D))]an <24(C—B)1-D). (2.1)

The result is sharp for the function G(z) given by (2.2)

! 24(C — B)(1 - D)
W =D =2)2n =5+ 4(B+ (C = B)(1=D))|

G(z) = 2" (n=3,4,...)

Proof. Let f(z) € Zi,B? then the inequality (1.3) or equivalently

2FW(2) +4F"(2)

<1
2BF®W(z2)+4[B+ (C — B)(1 — D)|F"(z) ’
holds true, therefore by makz’ng use of (1.2) we have
Z nF 1 (n (n —2)%a,2z""3
< 1.
—24(C — B)( 24+ Z n**(n —1)(n—2)[n — 3+ 4(B + (C — B)(1 — D))]a,z""°
Since Rez < |z| for all z, thus
Z nF(n (n —2)%a,2""3
Re < 1.
—24(C — B)( 24+ Z n* i n —1)(n — 2)[n -3+ 4(B+ (C — B)(1 — D))]a,z"3

By letting z — 1 through real values, we get the required result.

Conversely, let (2.1) holds true. If we let z € ON*, where OA* denotes the boundary
of A*, then we have

W(z) +4F7(2)
zBF®(z) + 4[B +(C = B)(1 = D)|F"(2)
SaZs (= 1)(n = 2)%)an|

+o00 < 1.
24(C—B)(1—-D) =3, 5" (n—1)(n —2)[n—3+4(B + (C — B)(1 - D))]|ax|
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Thus by the mazimum modolus Theorem we conclude f(z) € ZZB.
Now the proof is complete.

Theorem 2.2. If f(z) € ZZB, then

///exp/ ;dadﬁdfde

where A= B+ (C — D)(1 — D) and |W( )|<1

Proof. Since f(z) € 22,37 so (1.3) holds true or equivalently we have

2FW(2) +4F"(2) 1
2BFW(z) + 4AF" (2) ’
where A= B+ (C' — D)(1 — D). Hence
(4) 117
2FW(2) +4F (2) — W),

2BFO)(2) + 4AF"(2)
where [W(z)| < 1, z € A*. This yields
Fiz)  A(AW(:)) -
F"(z)  z(1—BW(z))

after four times integration we obtain the required result.

Remark. Theorem 2.1 shows that if f(z) € ZZ’B, then
0] < 24(C'— B)(1 - D)
Il =T (L 1 4A4)

where A= B+ (C' — B)(1 - D).

n=34,.. (2.3)

3. EXTREME POINTS AND CONVEX LINEAR COMBINATION

Our next theorems involve extreme points and convex linear combination prop-
erty.

Theorem 3.1. The function f(z) of the form (1.1) belongs to ZZ’B if and only if
it can be expressed by

+00
= dufalz) dy >0,
n=2

where  fo(z) = 271,
24(C'— B)(1 — D)
nktl(n —1)(n —2)[2n — 5+ 4(B+ (C — B)(1 — D))]

ZTL

fa(z) =271+
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Proof. Let f(z) =372 dnfu(2)

) o r 24(C — B)(1 — D)
= d2f2<z>+; dn {z T D —2)2n—5+4(B+ (C—B)(1=D))]

Z?’L

= 24(C — B)(1 - D) .
=z +§nk+1(n_1)(n—2)[2n—5+4(B+(C—B)(1—D))]dnz '

Now by Theorem 2.1 we conclude that f(z) € ZZ’B.

Conversely if f(z) is given by (1.1) belongs to ZZ}B, by letting dy = 1 — 3.5 d,
where

g M=) =2)Rn-5+4(B+(C-B)(1-D))] .,
. 24(C — B)(1 - D) : o

we conclude the required result.

Theorem 3.2. The class Y g is closed under conver linear combination.

Proof. Suppose that the function fi(z) and fa(z) defined by
jR——
fiz) =<+ Egan,jz" j=1,2, 2 € A*

are in the class 3% 5. Setting

f(2)=nfi(z) + (1 =n)f2(2), (0<n<1)
we obtain

—+00
f(Z) = % + Z(T/an,l + (1 - n)anvg)z".
n=3
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In the view of Theorem 2.1, we have

>t (n = 1)(n = 2)[2n = 5+ 4(B + (C = B)(1 = D))J(nan, + (1 = n)an,s)
=032,% 0 (n = 1)(n - 2)[2n — 5+ 4(B + (C = B)(1 = D))lan,

+(1 =) X, 50 (n = 1)(n = 2)[2n = 5+ 4(B + (C = B)(1 = D))]an,
<n[24(C = B)(1 = D)| + (1 = n)[24(C — B)(1 = D)]

=24(C — B)(1 - D),
which completes the proof.

4. SPECIAL OPERATORS

The main objective of this section is to define two operators on the functions

VS ZZ,B'

Furthermore, we verify properties of these operators.
For f € 3% . we define

(1) 7(f(2) =7 Jy ' f(wz)du, 7> 1
(2) L*(a,c)f(z) = gb(a ¢ z) * f(z), where

n+1

gbacz az", c¢#0,-1,-2,... ,a€ C—{0},

n+1
(), is the pochhammer symbol and ” x” denotes the Hadamard product.
We note that ¢(a, ¢; 2) = 22F1(1, a, ¢; z) where

+OO n
oF1(b,a,c;z) = Z (D)nla)n 2

n=0

() n!
is the well-known Gaussian hypergeometric function, see [4].

Theorem 4.1. If f € ZZB then 77(f(2)) and L*(a,c)f(z) are also in the same
class.

Proof. By a simple calculation we conclude that

1

@) =+

:37+1+n
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and since wﬁ, by theorem 2.1 we conclude the required result.
Also by using Hadamdard product we obtain

L*(a,c)f(z) = l+ i.i (@)1 anz"
’ P ot (C)n+1 n Y
and we easily conclude the result.
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