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Abstract: In this paper we have obtained some novel generating functions
of 2F1(−n, α; γ + n;x) - the modified form of Hypergeometric polynomials

2F1(−n, α; γ;x) by utilizing L. Weisner’s group-theoretic method of obtaining gen-
erating functions. In section-2, we obtain a set of infinitesimal operators by giving
suitable interpretations to both the index (n) and the parameter (γ) of the poly-
nomial under consideration, known as raising and the lowering operators has been
introduced and on showing that they generate a four dimensional Lie algebra, we
have obtained, in section-3, a novel generating functions of the Hypergeometric
polynomials which in turn yields a number of new and known results on generating
functions.
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1. Introduction

The Hypergeometric polynomials [5] 2F1(−n, α; γ;x) is a solution of the follow-
ing ordinary differential equation:

[x(1− x)
d2

dx2
+ {γ + (n− α− 1)x} d

dx
+ nα]y = 0. (1.1)

In this paper we have encountered a problem on generating functions of 2F1(-n,
α; γ + n;x) - the modified form of 2F1(−n, α; γ;x) by employing the method of
Weisner [2-4] with the suitable interpretations of n, γ simultaneously. Weisner’s
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method consists in constructing a partial differential equation from an ordinary
differential equation by giving suitable interpretation of n, γ simultaneously and
then on finding a non-trivial continuous transformations group admitted by the dif-
ferential equation. The method of Weisner is lucidly presented in the monograph
”Obtaining Generating Functions” written by E. B. McBride [8]. For previous
works on Hypergeometric polynomials one can see the works of [10-17]. The object
of the present note is to derive some new and known generating relations involv-
ing modified Hypergeometric polynomials 2F1(−n, α; γ + n;x),which satisfies the
following ordinary differential equation :

[x(1− x)
d2

dx2
+ {γ + n+ (n− α− 1)x} d

dx
+ nα]u = 0. (1.2)

The main results of our investigation are given in section-3.
2. Group-Theoretic Discussion :

Replacing
d

dx
by

∂

∂x
,n by y

∂

∂y
,γ by z

∂

∂z
and u by v(x, y, z) in (1.2) we get the

following partial differential equation :

x(1− x)
∂2v

∂x2
+ (1 + x)y

∂2v

∂x∂y
+ z

∂2v

∂x∂z
− (1 + α)x

∂v

∂x
+ αy

∂v

∂y
= 0. (2.1)

Thus we see that v1(x, y, z) = 2F1(−n, α; γ + n;x)ynzγ is a solution of (2.1), since

2F1(−n, α; γ + n;x) is a solution of (1.2).
We now define the infinitesimal operators Ai (i= 1,2,3,4) as follows :

A1 = y
∂

∂y
;A2 = z

∂

∂z
;A3 = (1− x)

z2

y

∂

∂x
+ z2

∂

∂y
;

A4 = x(1− x)
y

z2
∂

∂x
+
y2

z2
∂

∂y
+
y

z

∂

∂z
− (1 + αx)

y

z2
,

such that

A1(2F1(−n, α; γ + n;x)ynzγ) = n 2F1(−n, α; γ + n;x)ynzγ,

A2(2F1(−n, α; γ + n;x)ynzγ) = γ 2F1(−n, α; γ + n;x)ynzγ,

A3(2F1(−n, α; γ+n;x)ynzγ) =
n(n+ γ − α)

n+ γ
2F1(−(n−1), α; γ+n+1;x)yn−1zγ+2,

A4(2F1(−n, α; γ + n;x)ynzγ) = (n+ γ − 1) 2F1(−(n+ 1), α; γ + n− 1;x)yn+1zγ−2.
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We now proceed to find the commutator relations. Using the notation, [A,B]u =
(AB −BA)u, we have

[A1, A2] = 0; [A1, A3] = −A3; [A1, A4] = A4; [A2, A3] = 2A3;

[A2, A4] = −2A4; [A3, A4] = A2 − (1 + α).

From the above commutator relations,we state the following theorem .
Theorem 1: The set of operators {1, Ai(i = 1, 2, 3, 4)} where 1 stands for the
identity operator, generates a Lie algebra  L.
It can be easily shown that the partial differential operator  L given by

 L = x(1− x)
∂2

∂x2
+ (1 + x)y

∂2

∂x∂y
+ z

∂2

∂x∂z
− (1 + α)x

∂

∂x
+ αy

∂

∂y

can be expressed as follows :

(1− x) L = A4A3 − A1
2 − A1A2 + (2 + α)A1. (2.2)

From the above commutator relations,it can be easily verified that (1− x) L com-
mutes with Ai(i = 1, 2, 3, 4),

i.e. [(1− x) L, Ai] = 0, i = 1, 2, 3, 4. (2.3)

The extended form of the groups generated by Ai(i = 1, 2, 3, 4) are

ea1A1f(x, y, z) = f(x, ea1y, z),

ea2A2f(x, y, z) = f(x, y, ea2z),

ea3A3f(x, y, z) = f

(
x+ a3y

−1z2

1 + a3y−1z2
, y(1 + a3y

−1z2), z

)
,

ea4A4f(x, y, z) = (1 + a4xyz
−2)
−α

(1 + a4yz
−2)
−1×

×f
(
x

(
1 + a4yz

−2

1 + a4xyz−2

)
, y(1 + a4yz

−2), z(1 + a4yz
−2)

)
.

From the above we get,

ea4A4ea3A3ea2A2ea1A1f(x, y, z) = (1 + a4xyz
−2)
−α

(1 + a4yz
−2)
−1
f(ζ, η, θ), (2.4)
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where

ζ =
(1 + a4yz

−2)(x+ a3y
−1z2(1 + a4xyz

−2))

(1 + a4xyz−2){1 + a3y−1z2(1 + a4yz−2)}
,

η = ea1y(1 + a4yz
−2){1 + a3y

−1z2(1 + a4yz
−2)},

θ = ea2z(1 + a4yz
−2).

3. Generating Functions :
From (2.1), u(x, y, z) = 2F1(−n, α; γ + n;x)ynzγ is a solution of the system{

Lu = 0 Lu = 0 Lu = 0
(A1 − n)u = 0; (A2 − γ)u = 0; (A1 + A2 − n− γ)u = 0.

From (2.3),we easily get

S(1− x)L(2F1(−n, α; γ + n;x)ynzγ) = (1− x)LS(2F1(−n, α; γ + n;x)ynzγ) = 0,

where
S = ea4A4ea3A3ea2A2ea1A1 .

Therefore the transformation S(2F1(−n, α; γ + n;x)ynzγ) is annulled by (1− x)L.
Now putting a1 = a2 = 0 and replacing f(x, y, z) by 2F1(−n, α; γ + n;x)ynzγ in
(2.4), we get

ea4A4ea3A3(2F1(−n, α; γ + n;x)ynzγ) = (1 + a4xyz
−2)
−α

(1 + a4yz
−2)

n+γ−1

×(1 + (1 + a4yz
−2)a3y

−1z2)
n
2F1(−n, α; γ + n; ζ)ynzγ, (3.1)

where

ζ =
(1 + a4yz

−2)(x+ a3y
−1z2(1 + a4xyz

−2))

(1 + a4xyz−2)(1 + a3y−1z2(1 + a4yz−2))
.

In the other hand we get

ea4A4ea3A3(2F1(−n, α; γ + n;x)ynzγ)

=
∞∑
k=0

n+k∑
p=0

(−a3)p

p!

(−a4)k

k!

(−n)p(n+ γ − α)p
(n+ γ)p

(−n− γ − p+ 1)k

×2F1(−(n− p+ k), α; γ + n+ p− k;x)yn−p+kzγ+2p−2k. (3.2)

Equating (3.1) and (3.2),we get

(1 + a4xyz
−2)
−α

(1 + a4yz
−2)

n+γ−1
(1 + (1 + a4yz

−2)a3y
−1z2)

n
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×2F1

(
−n, α; γ + n;

(1 + a4yz
−2)(x+ a3y

−1z2(1 + a4xyz
−2))

(1 + a4xyz−2)(1 + a3y−1z2(1 + a4yz−2))

)

=
∞∑
k=0

n+k∑
p=0

(−a3)p

p!

(−a4)k

k!

(−n)p(n+ γ − α)p
(n+ γ)p

(−n− γ − p+ 1)k

×2F1(−(n− p+ k), α; γ + n+ p− k;x)yk−pz2p−2k, (3.3)

which seems to be new.
Replacing γ by γ−n in (3.3), we get the exact relation found derived in [ 14 ]. It is
interesting to mention that the results found derived in [16] can be easily obtained
by replacing γ by (γ − 2n) in (3.3).

Before discussing particular cases of the result (3.3) we would like to point it
out that the operators A3, A4 being non-commutative,as seen from the commuta-
tor relation [A3, A4] = A2 − (1 + α), the relation (3.3) will change if their order
be interchanged in ea4A4ea3A3 , which is given in section 5. we now consider the
following particular cases :
Case 1 : Putting a4 = 0 and replacing (−a3z2

y
) by t in (3.3),we get

(1− t)n2F1(−n, α; γ + n;
x− t
1− t

)

=
n∑
p=0

(−n)p(n+ γ − α)p
(n+ γ)p(p!)

2F1(−(n− p), α; γ + n+ p;x)tp. (3.4)

Case 2 : Putting a3 = 0 and replacing (−a4y
z2

) by t in (3.3),we get

(1− tx)−α(1− t)n+γ−12F1(−n, α; γ + n;
x− xt
1− xt

)

=
∞∑
k=o

(−n− γ + 1)k
k!

2F1(−(n+ k), α; γ + n− k;x)tk. (3.5)

Case 3: Substituting a3 = − 1
w

,a4 = 1 and y
z2

= t in (3.3),we get

(1 + xt)−α(1 + t)n+γ−1(t− 1

w
(1 + t))n2F1

(
−n, α; γ + n;

(1 + t)(x− 1
wt

(1 + xt))

(1 + xt)(1− 1
wt

(1 + t))

)

=
∞∑
k=0

n+k∑
p=0

( 1
w

)p

p!

(−1)k

k!

(−n)p(n+ γ − α)p
(n+ γ)p

(−n− γ − p+ 1)k
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×2F1(−(n− p+ k), α; γ + n+ p− k;x)tn+k−p. (3.6)

4. Special cases : Some special cases of interest are given below :

Special case 1: Replacing α, γ and x by 1 + α + β + n, 1 + α − n and
1− y

2
respectively in (3.4) - (3.6), we get the following results of Jacobi polynomials :

(1 + t)nP (α,β)
n (

y − t
1 + t

) =
n∑
p=0

(−β − n)p
p!

P
(α+p,β)
n−p (y)tp, (4.1)

{1− t

2
(y − 1)}−1−α−β−n(1 + t)αP (α,β)

n (
y + t

2
(y − 1)

1− t
2
(y − 1)

)

=
∞∑
k=o

(n+ 1)k
k!

P
(α−k,β)
n+k (x)tk, (4.2)

{1− t

2
(y − 1)}−1−α−β−n(1 + t)α{t− 1

w
(1 + t)}n

×P (α,β)
n

(
t(−t+ x(2 + t)) + (1+t)

w
(2 + t(1− x))

(t− 1
w

(1 + t))(2 + t(1− x))

)

=
∞∑
k=0

n+k∑
p=0

( 1
w

)p

p!

(−1)k

k!
(−n− β)p(n− p+ 1)kP

(α+p−k,β)
n−p+k (y)tn+k−p. (4.3)

The generating relations (4.1)-(4.3) are found in[9].
Subcase : Putting n = 0 in (4.2),we get

(1 + t)α{1− t

2
(x− 1)}−1−α−β =

∞∑
k=o

P
(α−k,β)
k tk. (4.4).

Finally,using the symmetry relation[5] :

P (β,α)
n (−x) = (−1)nP (α,β)

n (x),

and then simplifying,we get

{1− t

2
(x+ 1)}−1−α−β(1− t)β =

∞∑
k=0

P
(α,β−k)
k (x)tk. (4.5)

Relation (4.5) is worthy of notice and is found derived in [1,6,7] by different meth-
ods.
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Special case 2 : Replacing α, γ and x by 1 + α + β + 2n, 1 + α and
1− y

2
re-

spectively in (3.4)-(3.6), and simplifying, we get the results of Jacobi polynomials
found in [18].
5. Variants of the result(3.3) :

By interchanging the order of operators A3 and A4 in

ea4A4ea3A3ea2A2ea1A1 ,

we get

ea3A3ea4A4ea2A2ea1A1f(x, y, z) = (1 + a4xyz
−2)−α(1 + a4yz

−2)−1f(ζ, η, θ), (5.1)

where

ζ =
(x+ a3y

−1z2)(1 + a3a4 + a4yz
−2)

(1 + a3y−1z2)(1 + a3a4 + a4xyz−2)
,

η = ea1y(1 + a3y
−1z2)(1 + a3a4 + a4yz

−2),

θ = ea2z(1 + a3a4 + a4yz
−2).

Now putting a1 = a2 = 0 and replacing f(x, y, z) by 2F1(−n, α; γ + n;x)ynzγ in
(5.1),we get

ea3A3ea4A4(2F1(−n, α; γ + n;x)ynzγ)

= (1 + a4xyz
−2)−α(1 + a4yz

−2)−1(1 + a3y
−1z2)n

×(1 + a3a4 + a4yz
−2)n+γ2F1(−n, α; γ + n; ζ)ynzγ, (5.2)

where

ζ =
(x+ a3y

−1z2)(1 + a3a4 + a4yz
−2)

(1 + a3y−1z2)(1 + a3a4 + a4xyz−2)
.

On the other hand we get,

ea3A3ea4A4(2F1(−n, α; γ + n;x)ynzγ)

=
∞∑
k=o

n+k∑
p=o

(−a3)p

p!

(−a4)k

k!
(−n− γ + 1)k

(n− k)p(n+ γ − k − α)p
(n+ γ − k)p

×2F1(−(n− p+ k), α; γ + n+ p− k;x)yn−p+kzγ+2p−2k. (5.3)

Equating (5.2) and(5.3),we get

(1 + a4xyz
−2)−α(1 + a4yz

−2)−1(1 + a3y
−1z2)n(1 + a3a4 + a4yz

−2)n+γ
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×2F1

(
−n, α; γ + n;

(x+ a3y
−1z2)(1 + a3a4 + a4yz

−2)

(1 + a3y−1z2)(1 + a3a4 + a4xyz−2)

)

=
∞∑
k=o

n+k∑
p=o

(−a3)p

p!

(−a4)k

k!
(−n− γ + 1)k

(n− k)p(n+ γ − k − α)p
(n+ γ − k)p

×2F1(−(n− p+ k), α; γ + n+ p− k;x)yk−pz2p−2k.

6. Application: We now proceed to derive some novel results on bilateral gener-
ating relations by the application of the generating relation (3.5). The main result
is stated in the following theorem :
Theorem 2 : If there exists a unilateral relation of the form :

G(x, t) =
∞∑
n=o

an2F1(−n, α; γ + n;x)tn (6.1)

then

(1− xy)−α(1− y)γ−1G

(
x− xy
1− xy

, ty(1− y)

)
=
∞∑
n=o

ynσn(x, t), (6.2)

where

σn(x, t) =
n∑
k=0

ak
(−γ − k + 1)n−k

(n− k)!
2F1(−n, α, γ − n+ 2k;x)tk.

Proof : R.H.S.

=
∞∑
n=o

ynσn(x, t)

=
∞∑
n=o

yn
n∑
k=0

ak
(−γ − k + 1)n−k

(n− k)!
2F1(−n, α; γ − n+ 2k;x)tk

=
∞∑
k=0

ak(yt)
k

∞∑
n=0

(−γ − k + 1)n
n!

2F1(−(n+ k), α; γ − n+ k;x)yn

= (1− xy)−α(1− y)γ−1
∞∑
k=o

ak2F1

(
−k, α; γ + k,

x− xy
1− xy

)
(yt(1− y))k[using (3.5)]

= (1− xy)−α(1− y)γ−1G

(
x− xy
1− xy

, ty(1− y)

)
[using (6.1)]

= L.H.S
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The importance of the above theorem lies in the fact that whenever one knows a
generating relation of the form (6.1) then the corresponding bilateral generating
function can at once be written down from (6.2). So one can get a large number of
bilateral generating functions by attributing different suitable values to an in (6.1).
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