On Generating Functions of Hypergeometric Polynomials by Group-theoretic Method

K. P. Samanta and B. Samanta*

Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, W.B., India. E-mail: kalipadasamanta2010@gmail.com * Department of Mathematics, Shibpur Dinobundhoo Institution (College), 412/1,G.T.Road,Shibpur, Howrah -711 102, W.B., India. E-mail: bijoysamanta@yahoo.com

Dedicated to Prof. Hari M. Srivastava on his 75th birth anniversary

Abstract: In this paper we have obtained some novel generating functions of $_2F_1(-n, \alpha; \gamma + n; x)$ - the modified form of Hypergeometric polynomials $_2F_1(-n, \alpha; \gamma; x)$ by utilizing L. Weisner's group-theoretic method of obtaining generating functions. In section-2, we obtain a set of infinitesimal operators by giving suitable interpretations to both the index (n) and the parameter (γ) of the polynomial under consideration, known as raising and the lowering operators has been introduced and on showing that they generate a four dimensional Lie algebra, we have obtained, in section-3, a novel generating functions of the Hypergeometric polynomials which in turn yields a number of new and known results on generating functions.

Keywords: Generating functions, Hypergeometric polynomials, Jacobi polynomials. **AMS-2010 Subject Classification Code:** 33C65.

1. Introduction

The Hypergeometric polynomials [5] $_2F_1(-n, \alpha; \gamma; x)$ is a solution of the following ordinary differential equation:

$$[x(1-x)\frac{d^2}{dx^2} + \{\gamma + (n-\alpha-1)x\}\frac{d}{dx} + n\alpha]y = 0.$$
(1.1)

In this paper we have encountered a problem on generating functions of $_2F_1(-n, \alpha; \gamma + n; x)$ - the modified form of $_2F_1(-n, \alpha; \gamma; x)$ by employing the method of Weisner [2-4] with the suitable interpretations of n, γ simultaneously. Weisner's

method consists in constructing a partial differential equation from an ordinary differential equation by giving suitable interpretation of n, γ simultaneously and then on finding a non-trivial continuous transformations group admitted by the differential equation. The method of Weisner is lucidly presented in the monograph "Obtaining Generating Functions" written by E. B. McBride [8]. For previous works on Hypergeometric polynomials one can see the works of [10-17]. The object of the present note is to derive some new and known generating relations involving modified Hypergeometric polynomials $_2F_1(-n, \alpha; \gamma + n; x)$, which satisfies the following ordinary differential equation :

$$[x(1-x)\frac{d^2}{dx^2} + \{\gamma + n + (n-\alpha-1)x\}\frac{d}{dx} + n\alpha]u = 0.$$
(1.2)

The main results of our investigation are given in section-3.

2. Group-Theoretic Discussion :

Replacing $\frac{d}{dx}$ by $\frac{\partial}{\partial x}$, *n* by $y\frac{\partial}{\partial y}$, γ by $z\frac{\partial}{\partial z}$ and *u* by v(x, y, z) in (1.2) we get the following partial differential equation :

$$x(1-x)\frac{\partial^2 v}{\partial x^2} + (1+x)y\frac{\partial^2 v}{\partial x \partial y} + z\frac{\partial^2 v}{\partial x \partial z} - (1+\alpha)x\frac{\partial v}{\partial x} + \alpha y\frac{\partial v}{\partial y} = 0.$$
 (2.1)

Thus we see that $v_1(x, y, z) = {}_2F_1(-n, \alpha; \gamma + n; x)y^n z^\gamma$ is a solution of (2.1), since ${}_2F_1(-n, \alpha; \gamma + n; x)$ is a solution of (1.2).

We now define the infinitesimal operators A_i (i= 1,2,3,4) as follows :

$$A_{1} = y \frac{\partial}{\partial y}; A_{2} = z \frac{\partial}{\partial z}; A_{3} = (1-x) \frac{z^{2}}{y} \frac{\partial}{\partial x} + z^{2} \frac{\partial}{\partial y};$$
$$A_{4} = x(1-x) \frac{y}{z^{2}} \frac{\partial}{\partial x} + \frac{y^{2}}{z^{2}} \frac{\partial}{\partial y} + \frac{y}{z} \frac{\partial}{\partial z} - (1+\alpha x) \frac{y}{z^{2}},$$

such that

$$\begin{aligned} A_1({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma) &= n \ {}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma, \\ A_2({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma) &= \gamma \ {}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma, \\ A_3({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma) &= \frac{n(n+\gamma-\alpha)}{n+\gamma} \ {}_2F_1(-(n-1),\alpha;\gamma+n+1;x)y^{n-1}z^{\gamma+2}, \\ A_4({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma) &= (n+\gamma-1) \ {}_2F_1(-(n+1),\alpha;\gamma+n-1;x)y^{n+1}z^{\gamma-2}. \end{aligned}$$

We now proceed to find the commutator relations. Using the notation, [A, B]u = (AB - BA)u, we have

$$[A_1, A_2] = 0; [A_1, A_3] = -A_3; [A_1, A_4] = A_4; [A_2, A_3] = 2A_3;$$

$$[A_2, A_4] = -2A_4; [A_3, A_4] = A_2 - (1 + \alpha).$$

From the above commutator relations, we state the following theorem . **Theorem 1:** The set of operators $\{1, A_i (i = 1, 2, 3, 4)\}$ where 1 stands for the identity operator, generates a Lie algebra L.

It can be easily shown that the partial differential operator L given by

$$L = x(1-x)\frac{\partial^2}{\partial x^2} + (1+x)y\frac{\partial^2}{\partial x\partial y} + z\frac{\partial^2}{\partial x\partial z} - (1+\alpha)x\frac{\partial}{\partial x} + \alpha y\frac{\partial}{\partial y}$$

can be expressed as follows :

$$(1-x)L = A_4A_3 - A_1^2 - A_1A_2 + (2+\alpha)A_1.$$
(2.2)

From the above commutator relations, it can be easily verified that (1 - x)L commutes with $A_i (i = 1, 2, 3, 4)$,

i.e.
$$[(1-x)L, A_i] = 0, i = 1, 2, 3, 4.$$
 (2.3)

The extended form of the groups generated by $A_i (i = 1, 2, 3, 4)$ are

$$e^{a_1A_1}f(x,y,z) = f(x,e^{a_1}y,z),$$

$$e^{a_2A_2}f(x,y,z) = f(x,y,e^{a_2}z),$$

$$e^{a_3A_3}f(x,y,z) = f\left(\frac{x+a_3y^{-1}z^2}{1+a_3y^{-1}z^2}, y(1+a_3y^{-1}z^2), z\right),$$

$$e^{a_4A_4}f(x,y,z) = (1+a_4xyz^{-2})^{-\alpha}(1+a_4yz^{-2})^{-1} \times$$

$$\times f\left(x\left(\frac{1+a_4yz^{-2}}{1+a_4xyz^{-2}}\right), y(1+a_4yz^{-2}), z(1+a_4yz^{-2})\right).$$

From the above we get,

$$e^{a_4A_4}e^{a_3A_3}e^{a_2A_2}e^{a_1A_1}f(x,y,z) = (1 + a_4xyz^{-2})^{-\alpha}(1 + a_4yz^{-2})^{-1}f(\zeta,\eta,\theta), \quad (2.4)$$

where

$$\begin{aligned} \zeta &= \frac{(1+a_4yz^{-2})(x+a_3y^{-1}z^2(1+a_4xyz^{-2}))}{(1+a_4xyz^{-2})\{1+a_3y^{-1}z^2(1+a_4yz^{-2})\}},\\ \eta &= e^{a_1}y(1+a_4yz^{-2})\{1+a_3y^{-1}z^2(1+a_4yz^{-2})\},\\ \theta &= e^{a_2}z(1+a_4yz^{-2}). \end{aligned}$$

3. Generating Functions :

From (2.1), $u(x, y, z) = {}_2F_1(-n, \alpha; \gamma + n; x)y^n z^{\gamma}$ is a solution of the system

$$\begin{cases} Lu = 0 & Lu = 0 \\ (A_1 - n)u = 0; & (A_2 - \gamma)u = 0; \end{cases} \quad (A_1 + A_2 - n - \gamma)u = 0.$$

From (2.3), we easily get

$$S(1-x)L({}_{2}F_{1}(-n,\alpha;\gamma+n;x)y^{n}z^{\gamma}) = (1-x)LS({}_{2}F_{1}(-n,\alpha;\gamma+n;x)y^{n}z^{\gamma}) = 0,$$

where

$$S = e^{a_4 A_4} e^{a_3 A_3} e^{a_2 A_2} e^{a_1 A_1}.$$

Therefore the transformation $S({}_{2}F_{1}(-n, \alpha; \gamma + n; x)y^{n}z^{\gamma})$ is annulled by (1 - x)L. Now putting $a_{1} = a_{2} = 0$ and replacing f(x, y, z) by ${}_{2}F_{1}(-n, \alpha; \gamma + n; x)y^{n}z^{\gamma}$ in (2.4), we get

$$e^{a_4A_4}e^{a_3A_3}({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma) = (1+a_4xyz^{-2})^{-\alpha}(1+a_4yz^{-2})^{n+\gamma-1} \times (1+(1+a_4yz^{-2})a_3y^{-1}z^2)^n{}_2F_1(-n,\alpha;\gamma+n;\zeta)y^nz^\gamma,$$
(3.1)

where

$$\zeta = \frac{(1 + a_4 y z^{-2})(x + a_3 y^{-1} z^2 (1 + a_4 x y z^{-2}))}{(1 + a_4 x y z^{-2})(1 + a_3 y^{-1} z^2 (1 + a_4 y z^{-2}))}.$$

In the other hand we get

$$e^{a_4 A_4} e^{a_3 A_3} ({}_2F_1(-n,\alpha;\gamma+n;x)y^n z^\gamma)$$

$$= \sum_{k=0}^{\infty} \sum_{p=0}^{n+k} \frac{(-a_3)^p}{p!} \frac{(-a_4)^k}{k!} \frac{(-n)_p (n+\gamma-\alpha)_p}{(n+\gamma)_p} (-n-\gamma-p+1)_k$$

$$\times {}_2F_1(-(n-p+k),\alpha;\gamma+n+p-k;x)y^{n-p+k} z^{\gamma+2p-2k}.$$
(3.2)

Equating (3.1) and (3.2), we get

$$(1 + a_4 x y z^{-2})^{-\alpha} (1 + a_4 y z^{-2})^{n+\gamma-1} (1 + (1 + a_4 y z^{-2}) a_3 y^{-1} z^2)^n$$

On Generating Functions of Hypergeometric Polynomials ...

$$\times_{2} F_{1} \left(-n, \alpha; \gamma + n; \frac{(1 + a_{4}yz^{-2})(x + a_{3}y^{-1}z^{2}(1 + a_{4}xyz^{-2}))}{(1 + a_{4}xyz^{-2})(1 + a_{3}y^{-1}z^{2}(1 + a_{4}yz^{-2}))} \right)$$

$$= \sum_{k=0}^{\infty} \sum_{p=0}^{n+k} \frac{(-a_{3})^{p}}{p!} \frac{(-a_{4})^{k}}{k!} \frac{(-n)_{p}(n + \gamma - \alpha)_{p}}{(n + \gamma)_{p}} (-n - \gamma - p + 1)_{k}$$

$$\times_{2} F_{1}(-(n - p + k), \alpha; \gamma + n + p - k; x)y^{k-p}z^{2p-2k},$$

$$(3.3)$$

which seems to be new.

Replacing γ by $\gamma - n$ in (3.3), we get the exact relation found derived in [14]. It is interesting to mention that the results found derived in [16] can be easily obtained by replacing γ by $(\gamma - 2n)$ in (3.3).

Before discussing particular cases of the result (3.3) we would like to point it out that the operators A_3 , A_4 being non-commutative, as seen from the commutator relation $[A_3, A_4] = A_2 - (1 + \alpha)$, the relation (3.3) will change if their order be interchanged in $e^{a_4A_4}e^{a_3A_3}$, which is given in section 5. we now consider the following particular cases :

Case 1 : Putting $a_4 = 0$ and replacing $\left(-\frac{a_3 z^2}{y}\right)$ by t in (3.3), we get

$$(1-t)^{n}{}_{2}F_{1}(-n,\alpha;\gamma+n;\frac{x-t}{1-t})$$

$$=\sum_{p=0}^{n}\frac{(-n)_{p}(n+\gamma-\alpha)_{p}}{(n+\gamma)_{p}(p!)}{}_{2}F_{1}(-(n-p),\alpha;\gamma+n+p;x)t^{p}.$$
(3.4)

Case 2 : Putting $a_3 = 0$ and replacing $\left(-\frac{a_4y}{z^2}\right)$ by t in (3.3), we get

$$(1-tx)^{-\alpha}(1-t)^{n+\gamma-1}{}_{2}F_{1}(-n,\alpha;\gamma+n;\frac{x-xt}{1-xt})$$

= $\sum_{k=0}^{\infty} \frac{(-n-\gamma+1)_{k}}{k!} {}_{2}F_{1}(-(n+k),\alpha;\gamma+n-k;x)t^{k}.$ (3.5)

Case 3: Substituting $a_3 = -\frac{1}{w}, a_4 = 1$ and $\frac{y}{z^2} = t$ in (3.3), we get

$$(1+xt)^{-\alpha}(1+t)^{n+\gamma-1}(t-\frac{1}{w}(1+t))^{n}{}_{2}F_{1}\left(-n,\alpha;\gamma+n;\frac{(1+t)(x-\frac{1}{wt}(1+xt))}{(1+xt)(1-\frac{1}{wt}(1+t))}\right)$$
$$=\sum_{k=0}^{\infty}\sum_{p=0}^{n+k}\frac{(\frac{1}{w})^{p}}{p!}\frac{(-1)^{k}}{k!}\frac{(-n)_{p}(n+\gamma-\alpha)_{p}}{(n+\gamma)_{p}}(-n-\gamma-p+1)_{k}$$

J. of Ramanujan Society of Math. and Math. Sc.

$$\times_{2} F_{1}(-(n-p+k), \alpha; \gamma+n+p-k; x) t^{n+k-p}.$$
(3.6)

4. Special cases : Some special cases of interest are given below :

Special case 1: Replacing α , γ and x by $1 + \alpha + \beta + n$, $1 + \alpha - n$ and $\frac{1-y}{2}$ respectively in (3.4) - (3.6), we get the following results of Jacobi polynomials :

$$(1+t)^n P_n^{(\alpha,\beta)}(\frac{y-t}{1+t}) = \sum_{p=0}^n \frac{(-\beta-n)_p}{p!} P_{n-p}^{(\alpha+p,\beta)}(y) t^p, \tag{4.1}$$

$$\{1 - \frac{t}{2}(y - 1)\}^{-1 - \alpha - \beta - n}(1 + t)^{\alpha} P_{n}^{(\alpha, \beta)}(\frac{y + \frac{t}{2}(y - 1)}{1 - \frac{t}{2}(y - 1)})$$
$$= \sum_{k=0}^{\infty} \frac{(n + 1)_{k}}{k!} P_{n+k}^{(\alpha - k, \beta)}(x) t^{k},$$
(4.2)

$$\{1 - \frac{t}{2}(y-1)\}^{-1-\alpha-\beta-n}(1+t)^{\alpha}\{t - \frac{1}{w}(1+t)\}^{n} \times P_{n}^{(\alpha,\beta)}\left(\frac{t(-t+x(2+t)) + \frac{(1+t)}{w}(2+t(1-x))}{(t-\frac{1}{w}(1+t))(2+t(1-x))}\right)$$
$$= \sum_{k=0}^{\infty}\sum_{p=0}^{n+k}\frac{(\frac{1}{w})^{p}}{p!}\frac{(-1)^{k}}{k!}(-n-\beta)_{p}(n-p+1)_{k}P_{n-p+k}^{(\alpha+p-k,\beta)}(y)t^{n+k-p}.$$
(4.3)

The generating relations (4.1)-(4.3) are found in[9]. Subcase : Putting n = 0 in (4.2), we get

$$(1+t)^{\alpha} \{1 - \frac{t}{2}(x-1)\}^{-1-\alpha-\beta} = \sum_{k=0}^{\infty} P_k^{(\alpha-k,\beta)} t^k.$$
(4.4).

Finally, using the symmetry relation [5] :

$$P_n^{(\beta,\alpha)}(-x) = (-1)^n P_n^{(\alpha,\beta)}(x),$$

and then simplifying, we get

$$\{1 - \frac{t}{2}(x+1)\}^{-1-\alpha-\beta}(1-t)^{\beta} = \sum_{k=0}^{\infty} P_k^{(\alpha,\beta-k)}(x)t^k.$$
(4.5)

Relation (4.5) is worthy of notice and is found derived in [1,6,7] by different methods.

Special case 2: Replacing α , γ and x by $1 + \alpha + \beta + 2n$, $1 + \alpha$ and $\frac{1-y}{2}$ respectively in (3.4)-(3.6), and simplifying, we get the results of Jacobi polynomials found in [18].

5. Variants of the result(3.3):

By interchanging the order of operators A_3 and A_4 in

$$e^{a_4A_4}e^{a_3A_3}e^{a_2A_2}e^{a_1A_1},$$

we get

$$e^{a_3A_3}e^{a_4A_4}e^{a_2A_2}e^{a_1A_1}f(x,y,z) = (1 + a_4xyz^{-2})^{-\alpha}(1 + a_4yz^{-2})^{-1}f(\zeta,\eta,\theta), \quad (5.1)$$

where

$$\zeta = \frac{(x + a_3 y^{-1} z^2)(1 + a_3 a_4 + a_4 y z^{-2})}{(1 + a_3 y^{-1} z^2)(1 + a_3 a_4 + a_4 x y z^{-2})},$$

$$\eta = e^{a_1} y(1 + a_3 y^{-1} z^2)(1 + a_3 a_4 + a_4 y z^{-2}),$$

$$\theta = e^{a_2} z(1 + a_3 a_4 + a_4 y z^{-2}).$$

Now putting $a_1 = a_2 = 0$ and replacing f(x, y, z) by ${}_2F_1(-n, \alpha; \gamma + n; x)y^n z^{\gamma}$ in (5.1), we get

$$e^{a_3A_3}e^{a_4A_4}({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma)$$

= $(1 + a_4xyz^{-2})^{-\alpha}(1 + a_4yz^{-2})^{-1}(1 + a_3y^{-1}z^2)^n$
× $(1 + a_3a_4 + a_4yz^{-2})^{n+\gamma}{}_2F_1(-n,\alpha;\gamma+n;\zeta)y^nz^\gamma,$ (5.2)

where

$$\zeta = \frac{(x + a_3y^{-1}z^2)(1 + a_3a_4 + a_4yz^{-2})}{(1 + a_3y^{-1}z^2)(1 + a_3a_4 + a_4xyz^{-2})}.$$

On the other hand we get,

$$e^{a_3A_3}e^{a_4A_4}({}_2F_1(-n,\alpha;\gamma+n;x)y^nz^\gamma)$$

$$=\sum_{k=o}^{\infty}\sum_{p=o}^{n+k}\frac{(-a_3)^p}{p!}\frac{(-a_4)^k}{k!}(-n-\gamma+1)_k\frac{(n-k)_p(n+\gamma-k-\alpha)_p}{(n+\gamma-k)_p}$$

$$\times_2F_1(-(n-p+k),\alpha;\gamma+n+p-k;x)y^{n-p+k}z^{\gamma+2p-2k}.$$
(5.3)

Equating (5.2) and (5.3), we get

$$(1 + a_4xyz^{-2})^{-\alpha}(1 + a_4yz^{-2})^{-1}(1 + a_3y^{-1}z^2)^n(1 + a_3a_4 + a_4yz^{-2})^{n+\gamma}$$

$$\times_{2} F_{1}\left(-n, \alpha; \gamma+n; \frac{(x+a_{3}y^{-1}z^{2})(1+a_{3}a_{4}+a_{4}yz^{-2})}{(1+a_{3}y^{-1}z^{2})(1+a_{3}a_{4}+a_{4}xyz^{-2})}\right)$$

$$= \sum_{k=o}^{\infty} \sum_{p=o}^{n+k} \frac{(-a_{3})^{p}}{p!} \frac{(-a_{4})^{k}}{k!} (-n-\gamma+1)_{k} \frac{(n-k)_{p}(n+\gamma-k-\alpha)_{p}}{(n+\gamma-k)_{p}}$$

$$\times_{2} F_{1}(-(n-p+k), \alpha; \gamma+n+p-k; x)y^{k-p}z^{2p-2k}.$$

6. Application: We now proceed to derive some novel results on bilateral generating relations by the application of the generating relation (3.5). The main result is stated in the following theorem :

Theorem 2 : If there exists a unilateral relation of the form :

$$G(x,t) = \sum_{n=0}^{\infty} a_{n2} F_1(-n,\alpha;\gamma+n;x) t^n$$
(6.1)

then

$$(1 - xy)^{-\alpha}(1 - y)^{\gamma - 1}G\left(\frac{x - xy}{1 - xy}, ty(1 - y)\right) = \sum_{n = 0}^{\infty} y^n \sigma_n(x, t), \qquad (6.2)$$

where

$$\sigma_n(x,t) = \sum_{k=0}^n a_k \frac{(-\gamma - k + 1)_{n-k}}{(n-k)!} {}_2F_1(-n,\alpha,\gamma - n + 2k;x)t^k.$$

Proof : R.H.S.

$$\begin{split} &= \sum_{n=o}^{\infty} y^n \sigma_n(x,t) \\ &= \sum_{n=o}^{\infty} y^n \sum_{k=0}^n a_k \frac{(-\gamma - k + 1)_{n-k}}{(n-k)!} {}_2F_1(-n,\alpha;\gamma - n + 2k;x) t^k \\ &= \sum_{k=0}^{\infty} a_k (yt)^k \sum_{n=0}^{\infty} \frac{(-\gamma - k + 1)_n}{n!} {}_2F_1(-(n+k),\alpha;\gamma - n + k;x) y^n \\ &= (1 - xy)^{-\alpha} (1 - y)^{\gamma - 1} \sum_{k=o}^{\infty} a_{k2} F_1\left(-k,\alpha;\gamma + k, \frac{x - xy}{1 - xy}\right) (yt(1 - y))^k [\text{using } (3.5)] \\ &= (1 - xy)^{-\alpha} (1 - y)^{\gamma - 1} G\left(\frac{x - xy}{1 - xy}, ty(1 - y)\right) \quad [\text{using } (6.1)] \\ &= L.H.S \end{split}$$

The importance of the above theorem lies in the fact that whenever one knows a generating relation of the form (6.1) then the corresponding bilateral generating function can at once be written down from (6.2). So one can get a large number of bilateral generating functions by attributing different suitable values to a_n in (6.1).

Acknowledgement

The authors are greatly indebted to Dr. A. K. Chongdar of IIEST, Shibpur for his constant encouragement and guidance.

References

- [1] Feldheim E.: Relation entre les polynomes de Jacobi, Laguerre et, Hermite, Acta Mathematica, 75(1943), 117-138.
- [2] Weisner L.: Group-theoretic origin of certain generating function, Pacific Jour. Math. 5(1955), 1033-1039.
- [3] Weisner L.: Generating functions for Hermite functions, Canad. J. Math. 11 (1959), 141-147.
- [4] Weisner L.: Generating functions for Bessel functions, Canad J. Math. 11 (1959), 148-155.
- [5] Rainville E.D.: Special functions, Macmillan Co., New York. 1960.
- [6] Al-Salam W.A.: Operational reprentation for the Laguerre and other polynomials, Duke Math. Jour. 31(1964), 127-142.
- [7] Verma V.K.: Double Hypergeometric functions as generating functions of Jacobi and Laguerre polynomials, J. Indian Math. Soc. 32 (1968), 1-5.
- [8] McBride E.B.: Obtaining generating functions, Springer Verlag, New York. 1971.
- [9] Chakrabarti A.B.: Group-theoretic study of certain generating functions of Jacobi polynomials, J. Indian Inst. Sci. 64B (1983), 97-103.
- [10] Chakrabarti A.B. & Chongdar A.K.: Group-theoretic study of certain generating functions of Hypergeometric polynomials, Tamkang Jour. Math. 16 (3) (1985), 1-10.

- [11] Chongdar A.K.: Group-theoretic study of certain generating functions, Bull. Cal. Math. Soc. 77 (1985), 151-157.
- [12] Das S.: Group-theoretic study of certain generating functions for Hypergeometric polynomials-I, Pure Math. Manuscript. 5 (1986), 63-69.
- [13] Das S.: Group-theoretic study of certain generating functions for Hypergeometric polynomials-II, Pure Math. Manuscript. 5 (1986), 71-76.
- [14] Ghosh B.: Some generating functions involving Hypergeometric polynomials by Lie algebraic method, Bull. Inst. Math. Acad. Sinica. 16 (2) (1988), 149-155.
- [15] Ghosh B.: Some generating functions of Hypergeometric polynomials by Lie algebraic method, Jour. Ind. Math. Soc. 53 (1988), 195-208.
- [16] Chongdar A.K. et al.: Weisner's Methodic study of Hypergeometric polynomials, Quademi No. 40(1999), 1-31. Dipartimento di Matematica, Universita di Torino, Italy.
- [17] Ghosh B. & Basu D.K.: Origin of certain generating function of $F(-n, \beta; \gamma; x)$ from a view point of Lie algebra, Nepali Math. Sci. Rep. 18(1999/00), No. 1-2, 73-77.
- [18] Maiti P.K. & Chondar A.K.: Some generating functions of modified Jacobi polynomials by Lie algebraic method, Ultra Scientist. 24 (1) B(2012), 1-6.