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Abstract: The present paper deals with common fixed point results for four map-
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1. Introduction
The theory of common fixed point for self mappings in metric space satisfying cer-
tain conditions has a vast literature. However the existence of fixed points for self
maps on a metric space by altering distances between the points with the use of
certain control function is an interesting aspect. In this direction Khan, Swaleh
and Sessa [2] established the existence and uniqueness of a fixed point for a single
altering distance map. Recently Sastry and Babu [7,8], Naidu [5,6] proved a fixed
point theorem by altering distances between the points for a pair of self maps,
which address a new type of contractive fixed point problems. Pant [3] established
a unique common fixed point theorem for four self maps by using the conditions
of the type commutativity, contractive and continuity. The main purpose of this
paper is to obtain conditions for the existence of a unique common fixed point for
four self maps on a complete metric space by altering distances between the points.
Before going to our results, we give here some definitions.
Definition 1.1 [2] An altering distance is a mapping ϕ : [0,∞) → [0,∞) which
satisfies
1. ϕ is increasing and continuous,
2. ϕ(t) = 0 if and only if t = 0.
Definition 1.2 Let A and S be self mappings of a metric space (X, d), then A and
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S are said to be reciprocally continuous at a point t in X if
lim
n→∞

ASxn = At and lim
n→∞

SAxn = St whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t.

Definition 1.3 Two self maps A and S of a metric space (X,d) are called Ψ-
compatible if lim

n→∞
Ψ(d(ASxn, SAxn)) = 0 whenever {xn} is a sequence such that

lim
n→∞

Axn = lim
n→∞

Sxn = t for some t in X.

Definition 1.4 [1] Two self maps f and g on a metric space (X,d) are said to
be compatible if lim

n→∞
d(fgxn, gfxn) = 0 whenever {xn} is a sequence such that

lim
n→∞

fxn = lim
n→∞

gxn = t for some t in X.

2. Main Results
Theorem 2.1
Let {A, S} and {B, T} be weakly commuting pairs of self maps of a complete metric
space (X, d) and Ψ : R+ → R+ be a monotonically increasing function, satisfying
Ψ(2t) ≤ 2Ψ(t) and Ψ(t) = 0 if and only if t = 0, such that

AX ⊂ TX,BX ⊂ SX (1)

Ψ(d(Ax,By)) ≤ hMΨ(x, y) ∀x, y ∈ X (2)

where MΨ(x, y) = max{Ψ(d(Sx, Ty)),Ψ(d(Ax, Sx)),Ψ(d(By, Ty)),Ψ(d(Ax, Ty)),
Ψ(d(Ax,By))} , 0 ≤ h < 1. If {A, S} or {B, T} is a Ψ-compatible pair of recipro-
cally continuous mappings, then A,B,S and T have a unique common fixed point.
Proof
Let x0 be any point in X. Let {xn} be a sequence in X. Then by (1) we can define
another sequence {yn} such that for n = 0, 1, 2, ...

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2 (3)

We now show that {yn} is a Cauchy sequence.
From (2), we have

Ψ(d(y2n, y2n+1)) = Ψ(d(Ax2n, Bx2n+1))

≤ hMΨ(x2n, x2n+1)

= h max {Ψ(d(Sx2n, Tx2n+1)),Ψ(d(Ax2n, Sx2n)),Ψ(d(Bx2n+1, Tx2n+1)),

Ψ(d(Ax2n, Tx2n+1)),Ψ(d(Ax2n, Bx2n+1))}

= h max {Ψ(d(y2n−1, y2n)),Ψ(d(y2n, y2n−1)),Ψ(d(y2n+1, y2n)),
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Ψ(d(y2n, y2n)),Ψ(d(y2n+1, y2n))}

Now, if max {d(y2n+1, y2n), d(y2n−1, y2n)} = d(y2n+1, y2n) then

Ψ(d(y2n, y2n+1)) ≤ hΨ(d(y2n, y2n+1)),

i.e., (1− h)Ψ(d(y2n, y2n+1)) ≤ 0,
i.e., Ψ(d(y2n, y2n+1)) = 0, which is a contradiction.
So we must have max {d(y2n+1, y2n), d(y2n−1, y2n)} = d(y2n−1, y2n).
Therefore,

Ψd(y2n, y2n+1) ≤ hΨ(d(y2n−1, y2n)) (4)

In a similar way, we can also show that

Ψ(d(y2n−1, y2n)) ≤ hΨ(d(y2n−2, y2n−1)) (5)

By repeated application of (4) and (5), we get Ψ(d(yn, yn+1)) ≤ hnΨ(d(y0, y1)).
Moreover for every positive integer p, we have

Ψ(d(yn, yn+p)) ≤ Ψ[d(yn, yn+1) + d(yn+1, yn+2) + ...+ d(yn+p−1, yn+p)]

≤ Ψ[(1 + h+ ...+ hp−1)hnd(y0, y1)]

≤ Ψ

[(
1

1− h

)
hnd(y0, y1)

]
.

Now for a given ε > 0, there exists N ∈ Z+ such that

Ψ

[(
1

1− h

)
hnd(y0, y1)

]
< Ψ(ε), ∀n ≥ N.

This implies that d(yn, yn+p) < ε for all n ≥ N .
Hence, {yn} is a Cauchy sequence in X. Since X complete, there is a point z in X
such that yn → z as n→∞.
Hence from (3), we have

y2n = Ax2n = Tx2n+1 → z, y2n+1 = Bx2n+1 = Sx2n+2 → z. (6)

Now, suppose that {A, S} is a Ψ− compatible pair of reciprocally continuous map-
pings.
Since A and S are reciprocally continuous mappings, by (6), we get

ASx2n → Az, SAx2n → Sz. (7)
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Ψ− compatibility of A and S implies that lim
n→∞

Ψ(d(ASx2n, SAx2n)) = 0.

We now show that Az = Sz.
Suppose Az 6= Sz.
Let d(Az, Sz) = 2ε, then there exists N ∈ Z+ such that Ψ(d(ASx2n, SAx2n)) <
Ψ(ε) for all n ≥ N.

This implies that d(ASx2n, SAx2n) < ε for all n ≥ N. Hence by (6), d(Az, Sz)

< ε =
1

2
d(Az, Sz), a contradiction. Hence

Az = Sz. (8)

Since AX ⊂ TX, there is a point w in X such that Tw = Az. By (8) we have

Tw = Az = Sz. (9)

We now show that Az = Bw. Suppose Az 6= Bw. By (2) we have Ψ(d(Az,Bw))
≤ hMΨ(z, w) = hΨd(Bw,Az), a contradiction.
Hence Az = Bw. Therefore by (9), we get

Bw = Az = Sz = Tw. (10)

Since A and S are weakly commuting, we have by (10)

ASz = SAz, AAz = ASz = SAz = SSz. (11)

Since B and T are weakly commuting, we have

BBw = BTw = TBw = TTw. (12)

We now show that AAz = Az. Suppose AAz 6= Az, then by (2), we have
Ψ(d(Az,AAz)) = Ψ(d(Bw,AAz))
≤ hMΨ(Az,w)
= hΨ(d(Az,AAz)), by (9) & (10), a contradiction.
Hence, AAz=Az
Also AAz = SAz.
Therefore Az is a common fixed point of A and S.
Suppose that BBw 6= Bw, then by (2), (10) and (12) we have
Ψ(d(Bw,BBw)) = Ψ(d(Az,BBw))
≤ hMΨ(z,Bw)
= hΨ(d(Bw,BBw))
< Ψ(d(Bw,BBw)), a contradiction.
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Hence, BBw = Bw and since TBw = BBw, we have Bw is a common fixed point
for B and T.
Since Az = Bw, we have Az is a common fixed point for A,B,S and T.
Uniqueness of a common fixed point follows from (2).

The proof is similar when the pair {B, T} is assumed to be Ψ-compatible and
reciprocally continuous.

For a sequence of mappings we have the following common fixed point result.
Theorem 2.2
Let {Tn}∞n=1 be a sequence of self maps on (X, d). Assume that
(A1): There exists a φ in Φ, where Φ denotes the set of all continuous self

maps φ of R+ satisfying, φ is increasing and φ(t) = 0 iff t = 0, such that

φ(d(Tix, Tjy)) ≤ aφ(d(x, y)) + b(φ(d(x, Tix)) + φ(d(y, Tjy)))

+c(φ(d(x, Tjy)) + φ(d(y, Tix)))

for all i, j ∈ N and for all distinct x, y ∈ X, where a, c ≥ 0, 0 < b < 1 with
a+ 2b+ 2c < 1.
(A2): There is a point x0 in X such that any two consecutive members of the

sequence {xn} defined by xn = Tnxn−1, n ≥ 1 are distinct.
Then {Tn}∞n=1 has a unique common fixed point in X. Infact, {xn} is Cauchy
sequence and the limit of {xn} is the unique common fixed point of {Tn}∞n=1.
Proof
Let αn = d(xn, xn+1) and βn = φ(αn). From (A1) and (A2), we have
β1 = φ(d(x1, x2))
= φ(d(T1x0, T2x1))

≤ aφ(d(x0, x1)) + b(φ(d(x0, x1)) + φ(d(x1, x2)))

+c(φ(d(x0, x2)) + φ(d(x1, x1)))

or,
φ(d(x1, x2)) ≤ aφ(d(x0, x1)) + b(φ(d(x0, x1)) + φ(d(x1, x2)))

+c(φ(d(x0, x1)) + φ(d(x1, x2)))

or, β1 ≤ aβ0 + bβ0 + bβ1 + cβ0 + cβ1

or, β1 ≤
(a+ b+ c)

(1− b− c)
β0 = kβ0, where k =

(a+ b+ c)

(1− b− c)
< 1 since a+ 2b+ 2c < 1.

By induction, it follows that

βn ≤ kβn−1, ∀n ≥ 1. (13)
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As such βn ↓ 0 as n→∞ and since αn < αn−1 for n = 1, 2, ... and therefore, {αn}
is a decreasing sequence of non-negative real numbers.
Thus

{αn} ↓ 0. (14)

The remaining part of the theorem is to show that {xn} is Cauchy sequence in X.
If not so, then there is an ε > 0 and sequence {m(k)} and {n(k)} such that

m(k) < n(k), d(xn(k), xm(k)) ≥ ε and d(xn(k)−1, xm(k)) < ε.

Assume that xn(k)−1 = xm(k)−1 for infinitely many k. Then for such k, we have

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xm(k)−1) + d(xm(k)−1, xm(k))

= d(xn(k), xn(k)−1) + d(xm(k)−1, xm(k))→ 0 as k →∞, a contradiction.

Hence, for large k, xn(k)−1 6= xm(k)−1.
Consequently,

φ(ε) ≤ φ(d(xn(k), xm(k))) = φ(d(Tn(k)xn(k)−1, Tm(k)xm(k)−1))

≤ aφ(d(xn(k)−1, xm(k)−1)) + b(φ(d(xn(k)−1, xn(k))) + φ(d(xm(k)−1, xm(k))))

+c(φ(d(xn(k)−1, xm(k))) + φ(d(xm(k)−1, xn(k))))

≤ aφ(d(xn(k)−1, xm(k)) + d(xm(k), xm(k)−1))
+b(φ(d(xn(k)−1, xn(k))) + φ(d(xm(k)−1, xm(k))))
+c(φ(d(xn(k)−1, xm(k))) + φ(d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))))
≤ aφ(ε+ d(xm(k), xm(k)−1))
+b(φ(d(xn(k)−1, xn(k))) + φ(d(xm(k)−1, xm(k))))
+c(φ(ε) + φ(d(xm(k)−1, xm(k))) + φ(ε) + φ(d(xn(k)−1, xn(k))))
→ aφ(ε) + 2cφ(ε) as k →∞ by equation (14).
Hence, φ(ε) ≤ (a + 2c)φ(ε) < φ(ε), a contradiction. This shows that {xn} is a
Cauchy sequence in X.

As X is complete, limit of {xn} exists and there is a sequence {n(k)} such that
y 6= xn(k)−1 otherwise, y = xn−1 for large n, which is not the case, since consecutive
terms are different.

With this subsequence {xn(k)}, we have for any positive integer m,

φ(d(Tmy, xn(k))) = φ(d(Tmy, Tn(k)xn(k)−1))

≤ aφ(d(y, xn(k)−1)) + b(φ(d(Tmy, y)) + φ(d(xn(k), xn(k)−1)))
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+c(φ(d(Tmy, xn(k)−1)) + φ(d(xn(k), y))).

Taking limits as k →∞, we have

φ(d(Tmy, y)) ≤ bφ(d(Tmy, y)) + cφ(d(Tmy, y)) = (b+ c)φ(d(Tmy, y)).

Since 0 < b < 1 and 0 < c < 1, it follows that φ(d(Tmy, y)) = 0 and so
d(Tmy, y) = 0.

Thus y is a common fixed point for the sequence {Tn}∞n=1

Uniqueness of the fixed point follows trivially from (A1).
The nest result deals with a common fixed point theorem for a sequence of self

mappings satisfying a more general inequality condition
Theorem 2.3
Let {Tn}∞n=1 be a sequence of self maps on (X, d) and assume there is a point
x0 in X such that any two consecutive members of the sequence {xn} defined by
xn = Tnxn−1, n ≥ 1 are distinct. Further, assume that
(A3): There exists φ in Φ where Φ denotes the set of all continuous self maps

of R+ satisfying

1. φ is increasing

2. φ(t) = 0 iff t = 0

3. φ(x+ y) ≤ φ(x) + φ(y) such that

φ(d(Tix, Tjy)) ≤ a max{φ(d(x, y)), φ(d(x, Tix)), φ(d(y, Tjy)), φ(d(x, Tjy)),

φ(d(y, Tix))}+ b(φ(d(x, Tix)) + φ(d(y, Tjy)))

for some 0 < a < 1, b > 0 with a + b < 1/2 and for all i, j ∈ N and all distinct
x, y ∈ X. Then the sequence {Tn}∞n=1 has a unique common fixed point in X. In
fact {xn} is Cauchy sequence and the limit of {xn} is the unique common fixed
point of {Tn}∞n=1.
Proof:
Let αn = d(xn, xn+1) and βn = φ(αn). We have form (A3)
β1 = φ(d(x1, x2))
= φ(d(T1x0, T2x1))
≤ a max{φ(d(x0, x1)), φ(d(x0, x1)), φ(d(x1, x2)), φ(d(x0, x2)), φ(d(x1, x1))}
+b(φ(d(x0, x1)) + φ(d(x1, x2)))
≤ a max{φ(d(x0, x1)), φ(d(x0, x1)), φ(d(x1, x2)),
φ(d(x0, x1)) + (d(x1, x2)), φ(d(x1, x1))}+ b(φ(d(x0, x1)) + φ(d(x1, x2)))
≤ a max{φ(α0), φ(α0), φ(α1), φ(α0 + α1), φ(0)}+ bβ0 + bβ1



66 South East Asian J. of Mathematics and Mathematical Sciences

≤ a(β0 + β1) + bβ0 + bβ1 ≤ (a + b)β0 + (a + b)β1 or, β1 ≤
(

a+ b

1− a− b

)
β0 = kβ0,

where k =

(
a+ b

1− a− b

)
< 1.

By induction, it follows that

βn ≤ kβn−1, ∀n ≥ 1, βn = knβ0. (15)

As such βn ↓ 0 as n→∞ and αn < αn−1, for n = 1, 2, ...
Therefore {αn} is a decreasing sequence of non-negative real numbers. Thus

{αn} ↓ α (say) and so βn = φ(αn) ↓ φ(α). Consequently φ(α) = 0 and hence
α = 0.
Therefore,

{αn} ↓ 0. (16)

We now show that the sequence {xn} is Cauchy.
If not so, then there exists a ε > 0 and sequence of integers {m(k)} and {n(k)}

with k ≤ n(k) < m(k) such that

dk = d(xm(k), xn(k)) ≥ ε (17)

Let m(k) be the least integer exceeding n(k) for which (17) is true, then by well
ordering principle we have d(xm(k)−1, xn(k)) < ε.

Now,

ε < dk ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) < d(xm(k), xm(k)−1) + ε→ ε

as k →∞ and dk → ε. Hence, for large k, xm(k)−1 6= xn(k)−1.
Consequently

φ(ε) ≤ φ(d(xm(k), xn(k))) = φ(d(Tm(k)xm(k)−1, Tn(k)xn(k)−1))

≤ a max{φ(d(xm(k)−1, xn(k)−1)), φ(d(xm(k)−1, xm(k))), φ(d(xn(k)−1, xn(k))),

φ(d(xm(k)−1, xn(k))), φ(d(xn(k)−1, xm(k)))}

+b(φ(d(xm(k)−1, xm(k))) + φ(d(xn(k)−1, xn(k))))

≤ aφ(ε+ d(xn(k), xn(k)−1)) + b(φ(d(xm(k)−1, xm(k))) + φ(d(xn(k)−1, xn(k))))→ aφ(ε)

as k →∞., by (16).
Hence φ(ε) ≤ aφ(ε) < φ(ε) which is a contradiction.



Common fixed point results for weakly commuting maps by ... 67

This shows that {xn} is a Cauchy sequence, as X is complete, limit of {xn}
exists. Then from (A3), we have

φ(d(Tmy, xn(k))) = φ(d(Tmy, Tn(k)xn(k)−1))

≤ a max{φ(d(y, xn(k)−1)), φ(d(y, y)), φ(d(xn(k), xn(k)−1)),

φ(d(y, xn(k)−1)), φ(d(xn(k)−1, y))}+ b(φ(d(Tmy, y)) + φ(d(xn(k), xn(k)−1))).

Taking limit as k →∞, φ(d(Tmy, y)) ≤ bφ(d(Tmy, y)).
Hence, φ(d(Tmy, y)) = 0 i.e., d(Tmy, y) = 0.

So, y is a fixed point of Tm. Thus, y is a common fixed point for the sequence
{Tn}∞n=1.
Uniqueness of the fixed point follows from (A3)
The following example shows the applicability of Theorem 2.2 with φ(t) = t2.
Example 2.1
Let X = [0, 0.1] with usual metric.
Define Tn : X → X by Tnx = x2n for n = 1, 2, ...
Define φ(t) = t2 , t ≥ 0 so that φ ∈ Φ.
Let x, y ∈ X, x 6= y.
Then

φ(d(Tnx, Tmy)) = (x2n − y2m)2 ≤ (0.04)(xn − xm)2 ≤ (0.04)(x2n + y2m) (18)

and

(0.04)(x2n + y2m) + 2(0.05)(x2n+1 + y2m+1) + 2(0.03)(yx2n + xy2m)

= [0.04 + (0.1)x]x2n + [0.04 + (0.1)y]y2m + 0.06xy(x2n−1 + y2m−1)

≤ (0.05)(x2n + y2m) + 0.03(x2n−1 + y2m−1)

≤ (0.01)(x−y)2+(0.05)(x2+y2)+(0.05)(x4n+y4n)+(0.03)[(x2+y2)+(x4n+y4m)]

for all m ≥ 1 and n ≥ 1. As such we get

(0.04)(x2n + y2m) ≤ (0.01)(x− y)2 + (0.05)[(x− x2n)2 + (y − y2m)2]

+(0.03)[(x− y2m)2 + (y − x2n)2] (19)

From (18) and (19), it follows that the inequality (A1) holds with a = 0.01, b =
0.05 and c = 0.03.

Condition (A2) holds trivially for any 0 6= x0 ∈ X and 0 is the unique common
fixed point of {Tn}αn=1.
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