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Abstract: In this paper, we explore the extension of topological concepts to graph
theory by defining a graph topology as a collection of sub-graphs within a graph G
that satisfy properties analogous to the axioms of point-set topology. Specifically,
we focus on the edge-induced sub-graph topology, where open sets are sub-graphs
formed by subsets of the edge set E of G. Building upon this framework, we intro-
duce the concept of an N -graph topological space, generated by these edge-induced
sub-graphs. This novel approach facilitates a deeper exploration of the interplay
between graph-theoretical structures and topological spaces, potentially leading to
new insights and applications in both fields.
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1. Introduction
The primary objective of this study is to visually demonstrate key concepts

from topology. By observing graphical representations of topological spaces and
properties on a two-dimensional surface, several topological results become more
intuitive and engaging. Initial discussions of these concepts can be traced back to
work in [[1], [2], [3], [4], [6], [9], [12], [11]]. In addition, the notion of a topology
in a graph, defined through its subgraphs, was introduced and analyzed in [10].
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Pawlak’s work in [13] laid the groundwork for rough set theory by exploring the
concepts of approximations and boundary regions of a set. Building upon these
foundational studies, this paper introduces a new topology called N-Graph topol-
ogy. This topology is based on an approximation operator for sub graphs within
an undirected, non-empty graph G. The study also investigates the properties of
N-closed graphs and the N -closure of a sub graph within the context of an N-Graph
topological space. For a detailed discussion on the definitions and terminology used
in graph theory, refer to [[5], [7], [8], [14]].

2. Upper and Lower approximation of Subgraph

In this section, we explore the concepts of lower and upper approximations
for a sub graph H within a non-empty simple graph G. These approximations
are important in understanding the relationships between a sub graph and the
larger graph, especially when we consider the graph as a topological space. The
approximations are based on the collection R(G), which consists of distinct edge-
induced sub graphs of G. These sub graphs are derived from the edge sets of G,
and we study how their union and intersection can help describe the structure of
the sub graph H. In graph theory and topology, these operators are useful tools
for developing topological spaces over graphs, where the approximation operators
describe the relationships between various sub graphs and their surroundings. The
N-Graph topology introduced in this paper benefits from these approximations by
providing a framework to analyze and visualize topological properties of graphs.

Upper approximation N∗(H)

The upper approximation of a sub graph H, denoted as N∗(H), captures the sub
graphs that ”overlap” with H in some way, but may not be fully contained within it.
Formally, we define the upper approximation as: N∗(H) = {∪Hi : Hi ∈ R(G)and
Hi ∩ H ̸= ϕ}.
This definition suggests that N∗(H)includes all the edge-induced sub graphs Hi

from R(G) that share at least one edge with H. Intuitively, this represents the idea
of a ”loose” or ”larger” approximation of H, where the graph can extend beyond
the boundaries of H, but still retains some overlap.

Lower approximation N∗(H)

The lower approximation of a sub graph H, denoted as N∗(H), is more restric-
tive. It includes only those edge-induced sub-graphs that are completely contained
within H. Formally, the lower approximation is defined as:N∗(H)={∪Hi : Hi ∈
R(G) and Hi ⊆ H}.
Thus, N∗(H) consists of all the sub graphs in R(G) that are subsets of H, mean-
ing that they fit entirely within the boundaries of H. This approximation can be



A New Graph Topology on decomposition of Graph 193

thought of as the ”tightest” or ”smallest” approximation of H, where the graph
cannot extend beyond H.

Boundary Region BN(H)
The boundary region of H in G is defined as the difference between the upper and

lower approximations: BN(H)= N∗(H)−N∗(H). The boundary region captures the
elements that are in the upper approximation but not in the lower approximation.
In other words, it consists of sub graphs from R(G) that ”partially” overlap with
H but are not fully contained within it. This can be seen as the ”border” or
”boundary” between H and the rest of the graph, highlighting areas where H is not
completely represented.

Example 2.1. let’s consider the non-empty graph G, with edge set E(G) =
{p, q, r, w, x, y}, and the collection of distinct edge-induced sub graphs R(G) of G.
We define the set of sub graphs R(G) as:

� H1 with edges E(H1) = {p}.

� H2 with edges E(H2) = {q}.

� H3 with edges E(H3) = {r, w}.

� H4 with edges E(H4) = {x, y}.
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Consider a sub graph H of G with edge set E(G) = {p, q, x}. This is a relatively
small subgraph of G consisting of three edges.
The lower approximation N∗(H) captures the sub graphs that are contained entirely
within H. These are the sub graphs that can be viewed as precise representations of
H without extending beyond it. In this case, the lower approximation of H consists
of sub graphs whose edge sets are subsets of E(H). From the collection R(G), the
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only sub graph that is fully contained within H is H1, which corresponds to the
edge p, and H2, which corresponds to the edge q. Therefore, the lower approxima-
tion of H is the sub graph N∗(H) with edge set: E(N∗(H)) = {p, q}. Thus, N∗(H)
is a spanning sub graph of G that consists of just the edges p and q, without the
edge x.
The upper approximation N∗(H) represents a more ”extended” version of H, cap-
turing all sub graphs that intersect with H. These sub graphs may include edges
that are not fully contained within H, but that share some part of it. From the
collection R(G), the sub graphs that intersect H are:

� H1 with edge P, which intersects H.

� H2 with edge q, which intersects H.

� H4 with edges x and y, which intersects H through the edge x.

Therefore, the upper approximation of H includes all the edges that intersect
with H, so the edge set of N∗(H) is: E(N∗(H)) = {p, q, x, y}. Thus, N∗(H) is a
super graph of H, extending beyond the original edges of H to include the edge y
from H4.
The boundary region BN(H) is defined as the difference between the upper and
lower approximations, and it represents the edges that lie in th=e upper approxima-
tion but not in the lower approximation. Intuitively, it highlights the ”boundary”
or the parts of the graph that are adjacent to but not entirely contained within
H. The boundary region of H is calculated as: E(BN(H)) = {x, y}. Thus, the
boundary region consists of the edges x and y, which are part of the graph but not
fully contained within the sub graph H. These edges form the boundary between
the sub graph H and the rest of the graph G. This example demonstrates how the
approximation operators can be used to understand the structure of a sub graph
in the context of the entire graph.

Theorem 2.2. Let G be a non-empty simple graph, and let R(G) denote the collec-
tion of distinct edge-induced sub graphs of G. If H is a sub graph of G, the following
properties hold for the lower and upper approximations N∗(H) and N∗(H)of H:

1. N∗(H) ⊆ H ⊆ N∗(H).

2. N∗(G) = G = N∗(G).

3. N∗(N∗(H)) ⊆ H ⊆ N∗(N
∗(H)).

4. If H = ∅, then N∗(∅) = ∅ = N∗(∅)
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Proof. The proof of these properties follows directly from the definitions of the
lower and upper approximation operators.

1. Inclusion property: By definition,N∗(H) consists of the union of sub graphs
that are entirely contained within H, and N (H) consists of the union of sub
graphs that intersect H. Therefore, it is clear that N∗(H) ⊆ H ⊆ N∗(H).

2. Equality for the Whole Graph: The graph G is both a subset of itself and in-
tersects with itself, so applying the lower and upper approximation operators
to G yields N∗(G) = G = N∗(G)

3. Compositions of Approximations The inclusion:N∗(N∗(H)) ⊆ H ⊆ N∗(N
∗(H))

follows from the properties of the approximation operators.The lower approx-
imation N∗(H) limits the sub graphs to those contained within H, and apply-
ing the upper approximation to N∗(H) does not extend beyond H. Similarly,
N∗(H) is the union of sub graphs that intersect H, and applying the lower
approximation to N∗(H) will only yield sub graphs that are subsets of H.

4. Empty Graph Case: For the empty graph H = ∅, both the lower and upper
approximations of ∅ are also empty, so N∗(∅) = ∅ = N∗(∅).

Example 2.3. Consider the aforementioned graph in Example 2.1 with R(G) =
{H1, H2, H3} where E((H1) = {p, r}, E(H2) = {x, y}, E(H3) = {q, w} and H is a
spanning sub graph of G with edges E(H) = {p, q, x}.Consequently, the approxi-
mations of H are N∗(H) =, N∗(H) = G and BN(H) = G.

Theorem 2.4. Let G be a non-empty simple graph, and let H and T be sub graphs
of G. Consider the approximation operators N∗(.) and N∗(.), applied to these sub
graphs. The following properties hold:

1. Inclusion property of sub graphs: If H ⊆ T, N∗(H) ⊆ N∗(T) and
N∗(H) ⊆ N∗(T).

2. Union of lower approximations: [N∗(H) ∪N∗(T )] ⊆ N∗(H ∪ T )

3. Intersection of lower approximations: (N∗(H) ∪N∗(T)) ⊆ N∗[H ∪ T).

4. Union of upper approximations: N∗(H ∪ T)= N∗(H) ∪N∗(T).

5. Intersection of upper approximations: N∗(H ∩ T) ⊆ N∗(H) ∩N∗(T).

Proof. The properties of approximations substantiate Theorem 2.4.
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Example 2.5. To illustrate the aforementioned theorem, consider Example 2.1
with R(G) = {H1, H2, H3, H4} where E(H1) = {p}, E(H2) = {q}, E(H3) = {r, w},
E(H4) = {x, y}. Let H and T be spanning subgraphs of G, where E(H) = {p, q, x}
and E(T) = {p}. The lower approximation of H and T are spanning subgraphs
with edge set {p, q} and {p} respectively. Similarly, the upper approximations of H
and T are super spanning subgraphs with edge sets {x, y, p, q} and {p} respectively.

3. N-Graph Topology

Definition 3.1. Consider a non-empty simple graph G = (V,E) and a collection
of distinct edge induced subgraphs of G, generated by the subsets of E. For any sub-
graph H of G, define ΓR(H) = {G, ∅, N∗(H), N

∗(H), BN(H)} where ΓR(H) satisfies
the following axioms:

� The graph G (full graph) itself and the empty graph ∅ belong to ΓR(H).

� An arbitrary union of members of ΓR(H) is in ΓR(H).

� A finite intersection of members of ΓR(H) is in ΓR(H).

The collection ΓR(H) is termed a N-graph topology on G. The pair (G,ΓR(H)) is
designated as the N-Graph topological space. The elements of ΓR(H) are referred
to as N-open subgraphs in G, and the complement of a N-open subgraph is termed
a N-closed subgraph of ΓR(H). A subgraph that is both a N-open subgraph and a
N-closed subgraph is designated as a N-clopen subgraph.

Example 3.2. Consider a non-empty simple graph G with edges set {w,m, h, o, p, t}
and a collection of distinct edge-induced subgraphs of G,R(G) = {H1, H2, H3, H4}
where E(H1) = {w}, E(H2) = {m}, E(H3) = {o, p}, E(H4) = {h, t}.
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Given for a subgraph H of G and E(H) = {w,m, t},the N-Graph topology of G
is the collection ΓR(H) = {G, ∅, N∗(H), N

∗(H), BN(H)} and E(N∗(H)) = {w,m},
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E(N∗(H)) = {w,m, h, t}, E(BN(H)) = {h, t}.
Definition 3.3. For a subgraph H of non-empty simple graph G. the Indiscrete
N-graph topology is defined as ΓR(H) = {∅,G}, a collection of the trivial subgraphs
of G.

Theorem 3.4. For a subgraph H of non-empty simple graph G and ΓR(H) is the
N-Graph topology on G, the set B = {G, N∗(H), BN(H)} is the basis for ΓR(H).
Proof. To demonstrate that B is a basis for ΓR(H), it must satisfy the resulting
specifications:

1. For each edge e ∈ G, there exists at least one basis element Bi ∈ B containing
an edge e.

2. Since G∩N∗(H) = N∗(H), G∩BN(H) = BN(H) andN∗(H)∩BN(H) = ∅, if an
edge e be appropriate to the intersection of two basis elementsB1 andB2 of B ,
there exists a basis element B3 containing edge e such that B3 ⊆ B1∩B2.Thus,
B is a basis for ΓR(H).

Proposition 3.5. For a subgraph H of non-empty simple graph G:

1. If N∗(H) = ∅ and N∗(H) = G, then ΓR(H) = {G, ∅}

2. If N∗(H) = N∗(H) = H, then ΓR(H) = {G,H, ∅}

3. If N∗(H) = ∅,N∗(H) ̸= G, then ΓR(H) = {G, ∅, N∗(H)}

4. If N∗(H) ̸= ∅,N∗(H) = G, then ΓR(H) = {G, ∅, N∗(H)}

5. If N∗(H) ̸= N∗(H) where N∗(H) ̸= ∅ and N∗(H) ̸= G, then ΓR(H) =
{G, ∅, N∗(H), N

(H), BN(H)}.

Proposition 3.6. For a traversing subgraph H of non-empty simple graph G and
R(G) is the collection of distinct edge induced subgraphs isomorphic to H of G, the
N-graph topology for subgraph H is ΓR(H) = {G, ∅,H}.
Proof. Consider the spanning subgraph H of G. By the definition of lower and
upper approximations of graphs, it is evident that N∗(H) = ∅ and N∗(H) = H.
Hence the N-graph topology of any subgraph H is ΓR(H) = {G, ∅,H}.
4. N-interior and N-closure of subgraph in N-Graph topological space

The new concepts of interior and closure operator of subgraphs in N-Graph
topological spaces were introduced in this section and discussed some properties.

Definition 4.1. Let G = (V,E) be a graph and ΓR(H) is a N-graph topological
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space for any subgraph H of G. Let S be a subgraph of G. For an edge e ∈ E(S), S
is a neighbourhood graph of e, there exist Hi ∈ ΓR(H), provided e ∈ E(Hi) and
Hi ⊂ S. Now e is called an edge interior of S. The collection of all edge interiors
of S is denoted by S′. The N-interior subgraph of S is the subgraph generated by S′.
That is NHInt(S) = . < S′ >.

Definition 4.2. Let G = (V,E) be a graph and let ΓR(H) be a N-graph topology
on G. Let K be an edge induced subgraph of G. An edge e ∈ E(G)−E(K) is a edge
limit of K if for all open subgraphs of K′ in ΓR(H) with e ∈ E(K′), E(K)∩E(K′) is a
non-empty edge set. The collection of all edge limits of an edge induced subgraph K
is denoted by K∗. The N-closure of subgraph K is defined as edge-induced subgraph
generated by E(K) ∪ K∗ and it is denoted by NHCl(S).Additionally, NHInt(S) is
the largest N-open subgraph of S and NHCl(S) is the smallest super graph N-closed
subgraph of S.

Definition 4.3. A subgraph S of a N-graph topology on G is called N -dense
subgraph if NHCl(S) = G.

Proposition 4.4. Let G be a non-empty simple graph and H be the spanning
subgraph of G, then H is the only N- dense subgraph in ΓR(H).
Proof. Since the complements of all elements of ΓR(H) are N -closed subgraph and
G is the only N-closed subgraph which H is the subgraph of G. Hence NHCl(S) =
G. Therefore, H is the only N- dense subgraph in ΓR(H).

Proposition 4.5. Let G be a non-empty simple graph and S, T be the subgraphs
of G, then the following statements hold:

1. NHInt(S) ⊆ S ⊆ NHCl(S)

2. [NHInt(S) ∪NHInt(T)] ⊂ NHInt[S ∪ T]

3. NHInt(S ∩ T) = NHInt(S) ∩NHInt(T)

Example 4.6. Consider a non-empty simple graph G with edges {a, b, c, d, e, f, g, h}
and R(G) = {H1, H2, H3} where E(H1) = {a, b, c},E(H2) = {d, e},E(H3) =
{f, g, h}.

For spanning subgraph H of G and E(H) = {a, b, c, d}, the N-graph topology
is defined as ΓR(H) = {G, ∅, N∗(H), N

∗(H), BN(H)} where E(N∗(H)) = {a, b, c},
E(N∗(H)) = {a, b, c, d, e}, E(BN(H)) = {d, e}. For subgraph S ⊆ G and E(S) =
{a, b, c},then NHCl(S) and NHInt(S) as follows:
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