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Abstract: This article presents a novel mathematical model to explore the trans-
mission dynamics ofMycobacterium ulcerans (MU) infection, focusing on the water-
borne spread. Using SEIR and SEI models for human and water-bug populations,
it considers factors such as disease-related deaths and arsenic-contaminated water.
The analysis determines the basic reproduction number (R0), which dictates the
stability of disease-free and endemic equilibria. The study underscores the impor-
tance of controlling Buruli ulcer transmission, offering valuable insights for global
health management.
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1. Introduction
Buruli ulcer’s story begins in 1897 at Mengo Hospital in Uganda, where surgeon

Albert Ruskin Cook first observed its devastating effects. It wasn’t until fifty
years later that MacCallum and his team, based at Melbourne University, unveiled
the culprit bacterium in patients from southeastern Australia. Despite decades of
clinical insight, the disease’s enigmatic nature persisted until 1948 [8, 21].
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Buruli ulcer (BU), caused by Mycobacterium ulcerans (MU), is a devastating
disease that predominantly affects Africa, leading to severe tissue damage. Ranked
by the WHO as the third most prevalent mycobacterial infection, BU poses a major
health threat, especially to children aged 4 to 15. The disease flourishes in tropical
and subtropical regions, with water bugs acting as carriers in aquatic environments.
Environmental shifts, like flooding and land use changes, drive its spread. Despite
advances in understanding, the exact environmental source of MU and the triggers
for BU infection remain a mystery [2, 9, 22, 23, 28, 30, 33, 38, 39, 41].

Several mathematical models analyze Buruli Ulcer epidemiology, focusing on
human-water bug interactions [1, 3, 4, 15, 25]. Despite the link between vectors,
arsenic concentration, and BU spread, neither has been extensively investigated.

Many experts suggested two views on the transmission dynamics of Mycobac-
terium ulcerens. They said it may occur through contaminated water or bug
bites [1, 32, 34, 37, 40]. Water bugs can transmit MU through bites and arsenic-
contaminated water.

Duker et al. [12] suggest environmental arsenic influences Buruli ulcer (BU)
distribution by promoting Mycobacterium ulcerans (MU) accumulation in human
tissues. Aidoo et al. [1] found a positive link between arsenic and MU spread,
using a SIR model to explore BU transmission dynamics. Duker et al. [12] and
Aidoo et al. [1] demonstrated positive associations between arsenic concentrations
and the proliferation of Mycobacterium ulcerans, providing the empirical basis for
modeling arsenic’s influence on environmental contamination. Roche et al. [31]
emphasize water bug biting, mortality rates, and arsenic concentration on BU
prevalence. Bonyah et al. [4] propose a model with two BU transmission modes
and a treatment function. Kimaro et al. [19] highlight arsenic’s impact on MU
proliferation, using optimal control theory to manage MU transmission via water
bugs.

In our current investigation, we extend the framework proposed by Kimaro
et al. [19], enhancing it to include separate compartments for the exposed and
recovered individuals within the human population, and exclusively the exposed
compartment within the vector populations. This refinement is biologically moti-
vated by the nature of Mycobacterium ulcerens transmission: following exposure,
humans undergo an incubation period before becoming infectious, necessitating an
explicit Exposed class; moreover, individuals who recover from Buruli ulcer may
experience waning immunity, justifying the inclusion of a Recovered class with
possible return to susceptibility. For the vector populations, a latent period is also
observed after pathogen acquisition before vectors become infectious, prompting
the introduction of an Exposed compartment for vectors. Additionally, we tackle
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the challenges related to immunity loss and disease-induced mortality attributed
to Mycobacterium ulcerans infection within this demographic, as severe cases can
lead to death if untreated.

Our primary objective is twofold: first, to establish stability properties of equi-
libria; second, to evaluate the basic reproduction number R0, which serves as a
determinant of endemicity. Notably, we observe a forward transcritical bifurcation
around R0 = 1. By formulating an appropriate Lyapunov function, we establish
the global asymptotic stability of disease-free and endemic steady states. Our
analysis underscores that if R0 ≤ 1, the disease-free state is globally asymptoti-
cally stable, leading to disease eradication. Conversely, if R0 exceeds 1, a singular
endemic state emerges as globally asymptotically stable, indicating disease persis-
tence. Subsequently, we conduct numerical simulations to explore the influence of
key parameters on the dissemination of vector-borne Buruli ulcers, validating our
analytical conclusions and depicting potential behavioral scenarios. Our refined
model yields more biologically grounded conclusions by integrating factors such as
the exposed and recovered human populations and accounting for immunity loss
and exposure dynamics in vectors. By addressing disease-induced mortality, our
findings are enriched with greater realism, enhancing the validity and applicability
of our results.

The research article follows this structure: introductory remarks and historical
context in Section 1 ; description of model formulation, based on basic assumptions
and hypotheses, in Section 2 ; presentation of preliminary results on solution ex-
istence and boundedness in Section 3 ; including study of the basic reproduction
number using the next-generation operator; identification of equilibrium points,
feasibility conditions, and local stability analysis in Section 4 and 5 ; demonstra-
tion of global asymptotic stability of disease-free and endemic steady states through
construction of suitable Lyapunov functions in Section 6 ; numerical simulations il-
lustrating model behavior in Section 7 ; and conclusion summarizing key findings
in Section 8.

2. Model formulation

Within this segment, we have crafted an Ordinary Differential Equation (ODE)
representation of a model delineating the transmission dynamics of a vector-borne
disease among a host population. Our approach entails the utilization of an SEIR
model for human populations and an SEI model for vector populations.
Our inquiry delves into the intricate transmission dynamics of Buruli ulcer (BU),
encompassing three pivotal components: human hosts, water bugs, and the con-
tamination of water sources with both Arsenic and Mycobacterium ulcerans.
In formulating our present model, we operate under the following foundational
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assumptions:
(A1) The disease’s etiology posits that it does not propagate through human-to-
human transmission.
(A2) Human populations, waterbug habitats, and contaminated zones demon-
strate spatial homogeneity.
(A3) Human individuals encounter random bites from water bugs upon contact.
(A4) Our model accounts for the immunocompromised status of recovered pa-
tients.
(A5) We assume simplified vector dynamics (constant birth-death processes) for
tractability, as detailed vector ecology data are scarce. More complex models can
be used in future work.
(A6) Immunity development does not occur among the vector class; once infected,
the bugs persistently harbor M. ulcerans until death without clearing the infection.
This observation is supported by Roche et al. [16], who found that infected aquatic
bugs maintain M. ulcerans throughout their lifespan, and by Demange et al. [10],
who similarly reported long-term persistence of the pathogen in aquatic vectors.
(A7) Elevated arsenic levels in water have been linked to higher Mycobacterium
ulcerans presence, suggesting arsenic may facilitate BU transmission, as supported
by findings from Duker et al. [14] and Gyasi et al. [17].

For human population
dSH

dt
= A− βHSHIW + θHRH − µHSH .

dEH

dt
= βHSHIW − (αH + µH)EH .

dIH
dt

= αHEH − (γH + σH + µH)IH
dRH

dt
= γHIH − (θH + µH)RH

For vector population
dSW

dt
= B − βWSW IH − βESWηE − µWSW .

dEW

dt
= βWSW IH − αWEW + βESWηE − µWEW .

dIW
dt

= αWEW − (µW + δW )IW .
For contaminated water containing MU
dηE
dt

= a− ηEνE.



(2.1)

The dynamics of the total human population in the model (2.1) is obtained by
adding associated human sub-classes to get

dNH

dt
= A− σHIH −NHIH (2.2)

the total dynamics of water-bug population in model (2.1) is given by

dNW

dt
= B − δW IW −NW IW (2.3)
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and the total population of Mycobacterium ulceran is given by

dNE

dt
= a− ηEνE (2.4)

In this classical epidemic model, the overall host population at time t, represented
are stratified into three distinct epidemiological subclasses: susceptible SH(t), ex-
posed EH(t), infected IH(t), and individuals in the recovery phase from infection
RH(t). Mathematically, this division is expressed as NH(t) = SH(t) + EH(t) +
IH(t) +RH(t).
The comprehensive vector population at time t, denoted as NW (t) is categorized
into two distinctive epidemiological subclasses: susceptible water bug SW (t) and
infectious water-bug IW (t). This partition is succinctly expressed as NW (t) =
SW (t) + EW (t) + IW (t).
In our consideration of disease transmission, we incorporate the environmental
factor and introduce a distinct epidemiological component termed water contami-
nation ρE(t), encompassing Mycobacterium ulcerans (MU) due to arsenic.

State variables Description of variables

NH The overall population size of human hosts
SH The count of uninfected, susceptible individuals within the human population
EH The tally of individuals in the human population who have encountered the infection
IH The tally of presently contagious individuals within the human population
RH The rate at which humans with latent infections receive treatment
NW The complete count of water bug vectors in the population
SW The number of water bugs in the vector population that are susceptible
EW The count of water bugs within the vector population that are in the exposed state
IW The number of infectious water bugs in the vector population.
ηE Depicts environmental contamination with Mycobacterium ulcer (MU) in the water

Table 1: Equation (2.1) uses state variables to describe the system’s be-
havior over time

Parameters Description of parameters Unit

a Arsenic concentration rate in surface water µgl−1year−1

µH The intrinsic birth and death rates within the human population year−1

µW The inherent birth and death rates within the vector population year−1

βH The likelihood of transmission from water bugs (vectors) to humans unitless

βW
The probability of transmission from humans to water bugs (the vector
species)

unitless

βE Infectious rate of vector which is contact with contamination water persion−1year−1

γH The recovery rate in the Human population year−1

θH The loss of immunity of recovered Humans unitless
νE The rate at which decontamination takes place in the aquatic environment year−1

Table 2: Explanation of the parameters employed in the model’s equation
(2.1)
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Figure 1: The diagram shows the Buruli ulcer model

3. Basic properties of the Buruli ulcer model

Theorem 3. Let SH(0), EH(0), IH(0), RH(0), SW (0), EW (0), IW (0), ηE(0) be non-
negative initial condition, then the system (2.1) has a non-negative solution for
all instant t > 0. In addition, limsupt→∞NH(t) ≤ A

µH
, limsupt→∞NW (t) ≤ B

µW

and limsupt→∞NE(t) ≤ a
ηE
. Furthermore if NH(0) ≤ A

µH
then NH(t) ≤ A

µH
, if

NW (0) ≤ B
µW

then NW (t) ≤ B
µW

and if NE(0) ≤ a
ηE

then NE(t) ≤ a
ηE
. The feasible

region in the model (2.1) is

Ω = ΩH ∪ ΩW ∪ ΩE ⊂ R4
+XR

3
+XR

1
+ (3.1)

where ΩH = {(SH , EH , IH , RH) ∈ R4
+ : NH(t) ≤ A

µH
}, ΩW = {(SW , EW , IW ) ∈

R3
+ : NW (t) ≤ B

µW
} and ΩE = {ρE ∈ R1

+ : NE(t) ≤ a
ηE
} is positively invariant and

attracting with respect to model (2.1).
Proof. Using the first equation of model (2.1) gives rise to
dSH

dt
+ (µH + λ)SH ≥ 0, where λ = βHIW

This is a first-order linear differential equation. Here integrating factor is exp((µH)t
+

∫ t

0
λ(s)ds). Integrating (2.1) from time t = 0 to t = t resulted into
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d
dt
[SH(t) exp{(µH)t+

∫ t

0
λ(s)ds}] ≥ 0

It means that SH(t) ≥ SH(0) exp{−(µHt+
∫ t

0
λ(s)ds)}, for all t ≥ 0

We have followed similar approach to establish that EH , IH , RH , SW , IW , ρE are
non-negative for all instant t > 0.
We prove the other part of the theorem using Eqs. (2.2) - (4.2) to show that system
(2.1) is positively invariant so that
NH(t) ≤ NH(0)e

−µH t + A
µH

(1− e−µH t),

NW (t) ≤ NW (0)e−µW t + B
µW

(1− e−µW t),

ηE(t)E ≤ ηE(0)e
−ηEt + a

ηE
(1− e−ηt).

It follows that as t 7→ ∞ NH(t) ≤ A
µH

, NW (t) ≤ B
µW

, and η(t)E ≤ a
νE
. Furthermore

ifNH(0) ≤ A
µH

thenNH(t) ≤ A
µH

, ifNW (0) ≤ B
µW

thenNW (t) ≤ B
µW

and if η(0) ≤ a
νE

then η(t)E ≤ a
νE
.

Thus it is clear that Ω is positively invariant. The boundedness of the solutions
inside Ω is hereby proven. We conclude that the solutions to model (2.1) are
positively invariant and attractive in a region Ω. According to the theorem, we
deduced that system (2.1) is biologically feasible and well-posed mathematically in
Ω.

4. Estimating the Basic Reproduction Number (R0) with the Next-
Generation matrix (NGM) method

The basic reproduction number, symbolized as R0, is a fundamental pillar in
epidemic theory. It provides insight into the expected number of secondary cases
arising from a single infection within a completely susceptible population over the
entire infectious period.

We employ the next-generation matrix approach to calculate the basic repro-
duction number, denoted as R0, for the model (2.1). Within this framework, a
disease-free equilibrium state is established at E0(S

0
H = A

µH
, E0

H = 0, I0H = 0, R0
H =

0, S0
W = B

µW
, I0W = 0, η0E = 0).

The infected compartments in the system (2.1) encompass various classes, including
EH(t), IH(t), EW (t), IW (t), and ηE(t). By the next-generation matrix approach,
we determine both the non-negative infection matrix F and the non-singular tran-
sition matrix V at the disease-free equilibrium state E0 as follows:

∴ F (E0) =


0 0 0 βHS

0
H 0

0 0 0 0 0
βWS

0
W 0 0 0 βES

0
W

0 0 0 0 0
0 0 0 0 0

 (4.1)
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V (E0) =


k1 0 0 0 0
0 k2 0 0 0
0 0 k4 0 0
0 0 0 k5 0
0 0 0 0 νE

 (4.2)

Each term in the infection matrix F corresponds to the incidence rate of new
infections per unit time, ensuring units of (1/time). Similarly, each term in the
transition matrix V corresponds to rates of transfer between compartments (e.g.,
progression, recovery, or death), also measured in (1/time). Consequently, FV −1

becomes a dimensionless matrix, which complies with the requirement that the
basic reproduction number R0 must be dimensionless. The grouping of terms in V
was logically structured based on biologically similar transition processes to ensure
analytical tractability while maintaining dimensional consistency.
So, the next generation matrix FV −1 is

FV −1 =


0 0

βHS0
HαW

K4k5

βHS0
H

k5
0

0 0 0 0 0
βWS0

WαH

K1K2

βWS0
W

K2
0 0

βES0
W

νE

0 0 0 0 0
0 0 0 0 0

 (4.3)

The eigenvalues of FV −1 can be expressed as follows:

{0, 0, 0,−
√

βHβWαHαWS0
HS0

W

k1k2K4K5
,
√

βHβWαHαWS0
HS0

W

k1k2K4K5
}.

Among these eigenvalues, we focus on the largest dominant eigenvalue, which rep-
resents the basic reproduction number of the next-generation matrix, denoted as
Rng

0 . It is defined as [11, 36] ρ(FV −1) and can be expressed as: Rng
0 ≡ ρ(FV −1) =

R0 =
√

βHβWαHαWS0
HS0

W

k1k2K4K5
.

To further understand the influence of model parameters on R0, a preliminary sen-
sitivity analysis using Partial Rank Correlation Coefficients (PRCC) can be con-
ducted. PRCC is a global sensitivity analysis method that quantifies the strength
and direction of the relationship between input parameters and model outputs,
accounting for the effects of other variables. This technique has been effectively
utilized in infectious disease modeling to identify key parameters influencing R0.
Future work will explore this direction to refine parameter prioritization and en-
hance the model’s predictive capabilities.
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4.1. Steady state analysis
The model system (2.1) exhibits two distinct non-negative steady states:

(i) The Disease-free Axial Steady State (DFASS) denoted as D1(S
0
H , 0, 0, 0, S0

W , 0, 0, 0).

(ii) The Endemic Steady State (ESS) represented asD∗(S∗
H , E∗

H , I∗H , R∗
H , S∗

W , E∗
W , I∗W , η∗E).

5. Stability analysis
This part of the paper focuses on analyzing the local stability of the system

(2.1) around each of these steady states. The stability criteria of the system (2.1)
around steady states D and D∗ are stated in the following theorem.

Theorem 5.1. (a) Within the realm of positive real space R8
+, the elegance of the

local asymptotic stability of the disease-free steady-state unfolds gracefully, elegantly
asserted when R0 < 1 and (b) The presence of an endemic steady-state, denoted as
D∗(S∗

H , E
∗
H , I

∗
H , R

∗
H , S

∗
W , E

∗
W , I

∗
W , η

∗
E) in the system (2.1), indicates its local stability

if R0 > 1.
Proof. When R0 < 1, it signifies that either no infections are present in the water
bug population, or they serve exclusively as carriers.
To perform a local stability analysis of the system (2.1) around the disease-free
equilibrium (DFE), denoted as E0(S

0
H , E

0
H , I

0
H , R

0
H , S

0
W , E

0
W , I

0
W , η

0
E), we calculate

the Jacobian matrix. The initial conditions are specified as follows: S0
H = A

µW
,

E0
H = 0, I0H = 0, R0

H = 0, S0
W = B

µW
, E0

W = 0, I0W = 0, and η0E = 0.

So, JE0 =



−µH 0 0 θH 0 0 βHS
0
H 0

0 −k1 0 0 0 0 βHS
0
H 0

0 αH −k2 0 0 0 0 0
0 0 γH −k3 0 0 0 0
0 0 −βWS0

W 0 −µW 0 0 −βES0
W

0 0 βWS
0
W 0 0 −k4 0 βES

0
W

0 0 0 0 0 αW −k5 0
0 0 0 0 0 0 0 −νE


(5.1)

Hence det|E0 − λI8|

−µH−λ 0 0 θH 0 0 βHS
0
H 0

0 −k1−λ 0 0 0 0 βHS
0
H 0

0 αH −k2λ 0 0 0 0 0
0 0 γH −k3−λ 0 0 0 0
0 0 −βWS0

W 0 −µW−λ 0 0 −βES0
W

0 0 βWS
0
W 0 0 −k4−λ 0 βES

0
W

0 0 0 0 0 αW −k5−λ 0
0 0 0 0 0 0 0 −νE−λ
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The characteristic equation of det|E0 − λI8| is in the form

P (λ) = (µH + λ)(k3 + λ)(µW + λ)(νE + λ)T (λ), (5.2)

Now the eigen values of P (λ) = 0 are λ1 = −µH , λ2 = −µW , λ3 = −k3, λ4 = −νE
and T (λ) = 0 with T (λ) = a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0 where
a4 = 1,
a3 = k1 + k2 + k4 + k5,
a2 = k1k2 + k4k5 + (k1 + k2)(k4 + k5) + k1k2k4k5,
a1 = k1k2(k4 + k5) + k4k5(k1 + k2),
a0 = k1k2k4k5(1−R2

0)
To ascertain the system’s stability, we meticulously analyze its eigenvalues, ensuring
their compliance with the Routh-Hurwitz Criteria, as expounded by LaSalle in
1976 [20]. Specifically, we necessitate that ai > 0 for i = 0, 1, 2, 3, and that
a3a2a1 > a21 + a23a0.

Under the condition where R0 < 1 this prerequisite is met, guaranteeing that
ai > 0 for i = 0, 1, 2, 3. As a result, every eigenvalue of the characteristic equation
associated with (5.2) showcases a negative real component, thereby confirming the
local asymptotic stability of the disease-free equilibrium denoted as E1

The endemic steady state and its stability analysis
To identify the endemic equilibria of the system (2.1), where at least one of the
infected components is non-zero, we follow these steps:

Let E2 = (S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
W , E

∗
W , I

∗
W , η

∗
E) represent an arbitrary endemic equi-

librium of the model (2.1). To determine the values of these variables at steady
state, we solve the equations of the system (2.1):

η∗E =
a

νE
, (5.3)

E∗
H = (

k2
αH

)I∗H , (5.4)

R∗
H = (

γH
k3

)I∗H (5.5)

S∗
H =

k1
βHI∗W

E∗
H (5.6)

S∗
W =

B

(βW I∗H + βE
α
νE

+ µW )
, (5.7)
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E∗
W =

(βW I
∗
H + βE

α
νE
)B

k4(βW I∗H + βE
α
νE

+ µW )
(5.8)

I∗W =
αW

k4
E∗

W (5.9)

I∗H is the solution of the following cubic equation

f(I∗H) = L1(I
∗
H)

2 + L2(I
∗
H) + L3 = 0, (5.10)

where
L1=BβHβWαW ( θHγH

k3
− k1k2

αH
)− k1k2k4µHβW

αH
(5.11)

L2=BβHαWβE
a
νE
( θHγH

k3
− k1k2

αH
)− aµHβEk1k2k4k5

νEαH
− µHµW k1k2k4k5

αH
(1−R2

0) (5.12)

L3=ABβHαWβE
a
νE

(5.13)

Since all parameters in (2.1) are non-negative, it is easily numerically verified from
(5.10) that L1 < 0 and L3 > 0. Furthermore, L2 > 0 or L2 < 0 when R0 > 1 and
R0 < 1 respectively. Using the Descartes Rule of Signs, a positive solution of the
equation f(I∗H) = 0 exists, so there will always be a unique endemic equilibrium
point.

Theorem 5.2. The model has a unique endemic equilibrium point.

5.0.1. Forward transcritical bifurcation
Our qualitative analysis of the model (2.1) reveals two distinct equilibrium

points: one representing a disease-free state and the other characterizing an en-
demic state. The stability of the disease-free equilibrium is contingent upon the
value of the basic reproduction number, R0: it is stable when R0 < 1 and unstable
when R0 > 1 Conversely, the stability of the endemic equilibrium depends on R0:
it is stable when R0 > 1 and unstable when R0 < 1, subject to certain conditions.
This exchange of stability occurs precisely at the critical threshold R0 = 1, a phe-
nomenon known as a forward transcritical bifurcation. Notably, in this scenario,
the equilibrium points undergo a stability switch as they cross the value of 1, with
the endemic equilibrium exhibiting a forward transcritical bifurcation.
Biologically, the forward transcritical bifurcation at R0 = 1 implies that if control
measures reduce R0 is below unity, the disease can be eradicated. In contrast, if
R0 exceeds unity, the Buruli ulcer persists in the population.
For a visual representation, refer to Figure 2, illustrating the bifurcation diagram
of model (2.1).
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Figure 2: The visualization portraying the relationship between infected
human (IH) and basic reproduction number (R0) unveils a forward
transcritical bifurcation centered around the critical value of R0 = 1.
In this specific context, the chosen parameter values are as follows:
µW = 0.3333333, βW = 0.000015, βE = 0.000001, ψβH

= 1.2, αH = 0.0018,
θH = 0.04, γH = 0.5, νE = 0.9123, and αW = 1.5.

6. Global Stability analysis
In this section, we embark on a meticulous global analysis, delving deep into

the intricacies of the disease-free and endemic equilibria. Our chosen path employs
the venerable direct Lyapunov method, a technique demanding the artful construc-
tion of a function endowed with particular properties. To facilitate this analytical
voyage, we shall unveil the following pivotal findings.

Global stability of disease-free equilibrium with Lyapunov function
The following theorem elucidates a pivotal global characteristic of the disease-free
equilibrium, denoted as E1, in the framework of the system (2.1).

Theorem 6.1. If α and θH both equal zero, then the disease-free equilibrium point
E0 of the system described by equations (2.1) exhibits global asymptotic stability
within the region Γε when R0 ≤ 1.
Proof. To ascertain the global stability of the disease-free equilibrium, known as
E0, we will harness the versatility of a nonlinear Lyapunov function aptly named L.
This function’s realm of definition resides within the well-defined domain denoted
as Γ+

ϵ , and its role in our analysis is nothing short of pivotal. Before we dive into
the intricacies, let’s map out the flexible steps that will guide our journey:
Definition of the Lyapunov function L on the domain L+

ϵ . Now, let’s embark on the
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journey of computing the time derivative of L as we traverse along the solutions of
the system equation (2.1):

L̇ = W0
(SH−S0

H)

SH
(A−βHSHIW+θHRH−µHSH)+W1(βHSHIW−k1EH)+W2(αHEH−

k2IH) +W3(γHIH − k3RH) +W4
(SW−S0

W )

SW
(B − βWSW IH − βESWηE − µWSW )

+W5(βWSW IH + βESWηE − k4EW ) +W6(αWEW − k5IW ) +W7(α− ηEνE)
The ‘.’ notation, perched atop, signals our intent to differentiate concerning the
temporal variable ‘t’. When we infuse this notation with the initial conditions
S0
H = A

µH
and S0

W = B
µW

, the equation gracefully transforms into:

L̇ = −W0µH

(SH− A
µH

)2

SH
−W4µW

(SW− B
µW

)2

SW
+(W1−W0)βHSHIW+(W5−W4)βWSW IH+

(W0
(SH−S0

H)

SH
θH −W3k3)RH +(W2αH −W1k1)EH +(W3γH +W4βWS

0
W −W2k2)IH +

(W5 −W4)βESWηE + (W4S
0
WβE −W7νE)ηE + (W6αW −W5k3)EW + (W0βHS

0
H −

W6k4)IW +W7α
Given the widespread awareness created through media channels in developed and
developing countries, we can assume that the arsenic concentration rate tends to-
wards zero, i.e., α = 0. Furthermore, if the disease provides permanent immunity
against re-infection, the term θH becomes unnecessary, and we can set θH = 0.
We can choose the following values for the parameters: W0 = W1 = 1,W2 = k1

αH
,

W3 =
θH
k3
, W4 = W5 =

βHαWS0
H

k4k5
, W6 =

βHS0
H

k5
, W7 =

βES0
W

νE
.

Now, by substituting these values into the expression for L and performing some
rearrangements, the expression simplifies to:

L̇ < −µH

(SH − A
µH

)2

SH

− µW

(SW − B
µW

)2

SW

− k1k2
αH

(1−R2
0) (6.1)

By analyzing the time derivative L̇, we have established that L̇ is negative if R0 ≤ 1.
Furthermore, we observe that L̇ = 0 if and only if the following conditions are met:
S0
H = A

µH
, S0

W = B
µW

, E0
H = I0H = R0

H = 0, E0
W = I0W = 0, and η0E = 0. As a result,

the largest compact invariant set in (SH , EH , IH , RH , SW , EW , IW , ηE) ∈ Γε : L̇ = 0
consists of the singleton E1, where E1 represents the disease-free equilibrium point.
By applying Lasalle’s invariant principle [20], we conclude that E1 is globally
asymptotically stable within Γε, thereby completing the proof.

Global Stability of endemic equilibrium with Lyapunov function
Our objective now is to demonstrate the global stability of the endemic equilib-
rium E1(S

∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
W , E

∗
W , I

∗
W , η

∗
E), where S

∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
W , E

∗
W , I

∗
W , η

∗
E

are the solutions to the following equations:
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A− βHS
∗
HI

∗
W + θHR

∗
H − µHS

∗
H = 0

βHS
∗
HI

∗
W − (αH + µH)E

∗
H = 0

αHE
∗
H − (γH + σH + µH)I

∗
H = 0

γHI
∗
H − (θH + µH)R

∗
H = 0

B − βWS
∗
W I

∗
H − βES

∗
Wη

∗
E − µWS

∗
W = 0

βWS
∗
W I

∗
H − αWE

∗
W + βES

∗
Wη

∗
E − µWE

∗
W = 0

αWE
∗
W − (µW + δW )I∗W = 0

a− η∗EνE = 0


(6.2)

We have the following theorem.

Theorem 6.2. In the presence of R0 > 1, the unique endemic equilibrium, denoted
as E2, in the Buruli ulcer model (2.2), exudes an aura of asymptotic stability.
It gracefully resides within a discerning subset, Γ0, nestled within the expansive
expanse of Γε. This subset is meticulously defined as follows:
Γ0 = {(SH , EH , IH , RH , SW , EW , IW , ηE) ∈ Γε : V1 = 1 +

RHS∗
H

R∗
HSH

− RH

R∗
H
− S∗

H

SH
≥ 0.}

Proof. In our pursuit of establishing the global stability of the endemic equilibrium
E2, we shall introduce an ingenious nonlinear Lyapunov function, denoted as L,
which maps from the positive region of Γϵ to the real numbers. This function
is characterized by the following: Γ+ϵ = {SH , EH , IH , RH , SW , EW , IW , ηE ∈ Γε :
SH > 0, EH > 0, IH > 0, RH > 0, SW > 0, EW > 0, IW > 0, ηE > 0} This function
is defined as:

L(t) = W0(SH − S∗
H − S∗

H log SH

S∗
H
) +W1(EH − E∗

H − E∗
H log EH

E∗
H
)

+W2(IH − I∗H − I∗H log IH
I∗H
) +W3(RH −R∗

H −R∗
H log RH

R∗
H
)

+W4(SW − S∗
W − S∗

W log SW

S∗
W
) +W5(EW − E∗

W − E∗
W log EW

E∗
W
)

+W6(IW − I∗W − I∗W log IW
I∗W

) +W7(ηE − η∗E − η∗E log ηE
η∗E
)η̇E

(6.3)

The Layapunov function L is continuous for all SH , EH , IH , RH , SW , EW , IW , ηE >
0. In our pursuit of establishing the global stability of the endemic equilibrium E2,
we introduce an intricate nonlinear Lyapunov function denoted as L. This function
elegantly maps the positive region of Γϵ to the real numbers. Its time derivative
along the trajectories of the system (2.1) is computed as follows:

L̇(t) = W0(1−
S∗
H

SH
)ṠH +W1(1−

E∗
H

EH
)ĖH +W2(1−

I∗H
IH
)İH +W3(1−

R∗
H

RH
)ṘH

+W4(1−
S∗
W

SW
)ṠW +W5(1−

E∗
W

EW
)ĖW +W6(1−

I∗W
IW

)İW +W7(1−
η∗E
ηE
)η̇E.

It follows that the first equation of (2.1)



Modeling Buruli Ulcer Transmission: SEIR-SEI Analysis ... 179

(1− S∗
H

SH
)ṠH = (1− S∗

H

SH
)(A− βHSHIW + θHRH − µHSH)

= µHS
∗
H(2−

S∗
H

SH
− SH

S∗
H
) + βHS

∗
HI

∗
W (1− S∗

H

SH
− SHIW

S∗
HI∗W

+ IW
I∗W

)

−θHR∗
H(1−

S∗
H

SH
− RH

R∗
H
+

RHS∗
H

R∗
HSH

).

(6.4)

Similarly, remaining eight equations in (2.1) we have

(1− E∗
H

EH
)ĖH = (1− EH

E∗
H
)(βHSHIW − k1EH)

= βHS
∗
HI

∗
W (1 + SHIW

S∗
HI∗W

− EH

E∗
H
− SHIWE∗

H

S∗
HI∗WEH

)
(6.5)

(1− I∗H
IH
)İH = (1− I∗H

IH
)(αHEH − k2IH)

= αHE
∗
H(1 +

EH

E∗
H
− IH

I∗H
− EHI∗H

E∗
HIH

).
(6.6)

(1− R∗
H

RH
)ṘH = (1− RH

R∗
H
)(γHIH − k3RH)

= γHI
∗
H(1 +

IH
I∗H

− RH

R∗
H
− IHR∗

H

I∗HRH
).

(6.7)

(1− S∗
W

SW
)ṠW = (1− S∗

W

SW
)(B − βWSW IH − βESWηE − µWSW )

= βWS
∗
W I

∗
H(1−

S∗
W

SW
− SW IH

S∗
W I∗H

+ IH
I∗H
) + βES

∗
Wη

∗
E(1−

S∗
W

SW
− SW ηE

S∗
W η∗E

+ ηE
η∗E
)

+µWS
∗
W (2− SW

S∗
W

− S∗
W

SW
).

(6.8)

(1− E∗
W

EW
)ĖW = (1− E∗

W

EW
)(βWSW IH

N
+ βESWηE − k5EW )

= βWS
∗
W I

∗
H(1 +

SW IH
S∗
W I∗H

− EW

E∗
W

− SW IHE∗
W

S∗
W I∗HEW

)

+βES
∗
Wη

∗
E(1 +

SW ηE
S∗
W η∗E

− EW

E∗
W

− SW ηEE∗
W

S∗
W η∗EEW

).

(6.9)

(1− I∗W
IW

)İW = (1− I∗W
IW

)(αWEW − µW IW ).

= αWE
∗
W (1 + EW

E∗
W

− IW
I∗W

− EW I∗W
E∗

W IW
).

(6.10)

(1− η∗E
ηE
)η̇E = (1− η∗E

ηE
)(α− ηEνE).

= α(2− ηE
η∗E

− η∗E
ηE
).

(6.11)

Substituting the expression from system (2.1) at the endemic steady state, we have:

L̇ = W0{µHS∗
H(2− S∗

H
SH

− SH
S∗
H
) + βHS∗

HI∗W (1− S∗
H

SH
− SHIW

S∗
H

I∗
W

+ IW
I∗
W

)− θHR∗
H(1− S∗

H
SH

− RH
R∗

H
+

RHS∗
H

R∗
H

SH
)}

+W1{βHS∗
HI∗W (1 + SHIW

S∗
H

I∗
W

− EH
E∗

H
− SHIWE∗

H
S∗
H

I∗
W

EH
)}+W2{αHE∗

H(1 + EH
E∗

H
− IH

I∗
H

− EHI∗H
E∗

H
IH

)}

+W3{γHI∗H(1 + IH
I∗
H

− RH
R∗

H
− IHR∗

H
I∗
H

RH
)}+W4{βWS∗

W I∗H(1− S∗
W

SW
− SW IH

S∗
W

I∗
H

+ IH
I∗
H
) + βES∗

W η∗E(1− S∗
W

SW
−

SW ηE
S∗
W

η∗
E

+ ηE
η∗
E
) + µWS∗

W (2− SW
S∗
W

− S∗
W

SW
)}+W5{βWS∗

W I∗H(1 + SW IH
S∗
W

I∗
H

− EW
E∗

W
− SW IHE∗

W
S∗
W

I∗
H

EW
)

+βES∗
W η∗E(1 + SW ηE

S∗
W

η∗
E

− EW
E∗

W
− SW ηEE∗

W
S∗
W

η∗
E
EW

)}+W6{αWE∗
W (1 + EW

E∗
W

− IW
I∗
W

− EW I∗W
E∗

W
IW

)}

+W7{a(2− ηE
η∗
E

− η∗
E

ηE
)}.


(6.12)
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Here, the system of equations is given below

W0βHS
∗
HI

∗
W −W6αWE

∗
W = 0

W1βHS
∗
HI

∗
W −W0βHS

∗
HI

∗
W = 0

W2αHE
∗
H −W1βHS

∗
HI

∗
W = 0

W3γHI
∗
H −W2αHE

∗
H +W4βWS

∗
W I

∗
H = 0

W4βES
∗
Wη

∗
E −W7a = 0

W5βWS
∗
W I

∗
H −W4βWS

∗
W I

∗
H = 0

W6αWE
∗
W −W5βWS

∗
W I

∗
H −W5βES

∗
Wη

∗
E = 0


(6.13)

Next, setting the values of the coefficients

W0 = W1 =
(βWS∗

W I∗H+βES∗
W η∗E)

βHS∗
HI∗W

W2 =
(βWS∗

W I∗H+βES∗
W η∗E)

αHE∗
H

W3 =
βES∗

W η∗E
γHI∗H

W4 = W5 = 1

W6 =
(βWS∗

W I∗H+βES∗
W η∗E)

αWE∗
W

W7 =
βES∗

W η∗E
a


(6.14)

in equation (6.17). After some calculation, we have

L̇ =
(βW S∗

W I∗H+βES∗
W η∗

E)

βHS∗
H

I∗
W

{µHS∗
H(2− S∗

H
SH

− SH
S∗
H
) + βHS∗

HI∗W (1− S∗
H

SH
− SHIW

S∗
H

I∗
W

+ IW
I∗
W

)− θHR∗
H(1− S∗

H
SH

−
RH
R∗

H
+

RHS∗
H

R∗
H

SH
)}+

(βW S∗
W I∗H+βES∗

W η∗
E)

βHS∗
H

I∗
W

{βHS∗
HI∗W (1 + SHIW

S∗
H

I∗
W

− EH
E∗

H
− SHIWE∗

H
S∗
H

I∗
W

EH
)}+

(βW S∗
W I∗H+βES∗

W η∗
E)

αHE∗
H

{αHE∗
H(1 + EH

E∗
H

− IH
I∗
H

− EHI∗H
E∗

H
IH

)}+
βES∗

W η∗
E

γHI∗
H

{γHI∗H(1 + IH
I∗
H

− RH
R∗

H
− IHR∗

H
I∗
H

RH
)}+ {βWS∗

W I∗H(1−
S∗
W

SW
− SW IH

S∗
W

I∗
H

+ IH
I∗
H
) + βES∗

W η∗E(1− S∗
W

SW
− SW ηE

S∗
W

η∗
E

+ ηE
η∗
E
) + µWS∗

W (2− SW
S∗
W

− S∗
W

SW
)}

+{βWS∗
W I∗H(1 + SW IH

S∗
W

I∗
H

− EW
E∗

W
− SW IHE∗

W
S∗
W

I∗
H

EW
) + βES∗

W η∗E(1 + SW ηE
S∗
W

η∗
E

− EW
E∗

W
− SW ηEE∗

W
S∗
W

η∗
E
EW

)}+
(βW S∗

W I∗H+βES∗
W η∗

E)

αWE∗
W

{αWE∗
W (1 + EW

E∗
W

− IW
I∗
W

− EW I∗W
E∗

W
IW

)}+
βES∗

W η∗
E

a
{a(2− ηE

η∗
E

− η∗
E

ηE
)}.


(6.15)

After a little rearrangement, we obtain,

L̇ = −θHR∗
H

(βW S∗
W I∗H+βES∗

W η∗
E)

βHS∗
H

I∗
W

(1− S∗
H

SH
− RH

R∗
H

+
RHS∗

H
R∗

H
SH

)− µHS∗
H

(βW S∗
W I∗H+βES∗

W η∗
E)

βHS∗
H

I∗
W

(
S∗
H

SH
+ SH

S∗
H

− 2)

−µWS∗
W (SW

S∗
W

+
S∗
W

SW
− 2) + βWS∗

W I∗H(6− S∗
H

SH
− SHIWE∗

H
S∗
H

I∗
W

EH
− EHI∗H

E∗
H

IH
− S∗

W
SW

− SW IHE∗
W

S∗
W

I∗
H

EW
− EHI∗W

E∗
W

IW
)

+βES∗
W η∗E(9− S∗

H
SH

− SHIWE∗
H

S∗
H

I∗
W

EH
− EHI∗H

E∗
H

IH
− IHR∗

H
I∗
H

RH
− RH

R∗
H

− S∗
W

SW
− SW ηEE∗

W
S∗
W

η∗
E
EW

− EW I∗W
E∗

W
IW

− η∗
E

ηE
).


(6.16)

Therefore, L̇ = Ui + Vj +Wk. (6.17)

Where i = 1, 2; j = 1, 2, 3, 4; k = 1, 2, 3.
Now, by the inequality, we know that the arithmetic mean is greater than or equal
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to the geometric mean:

U1 =
SH

S∗
H
+

S∗
H

SH
≥ 2.

U2 =
SW

S∗
W

+
S∗
W

SW
≥ 2.

(6.18)

By the mean equality, we obtain,

W1 =
(βWS∗

W I∗H+βES∗
W η∗E)

βHS∗
HI∗W

(2− IHE∗
H

I∗HEH
− EHI∗H

E∗
HIH

)
(βWS∗

W I∗H+βES∗
W η∗E)

βHS∗
HI∗W

{2− 2(
IHE∗

H

I∗HEH
.
EHI∗H
E∗

HIH
)
1
2}.

(6.19)

= 0 ∀ IH > 0, EH > 0.
The equality holds if and only if IH

I∗H
= EH

E∗
H

Proceeding in this similar way, we get

W2 = βWS
∗
W I

∗
H(6−

S∗
H

SH
− SHIWE∗

H

S∗
HI∗WEH

− EHI∗H
E∗

HIH
− S∗

W

SW
− SW IHE∗

W

S∗
W I∗HEW

− EHI∗W
E∗

W IW
)

≤ βWS
∗
W I

∗
H{6− (

S∗
H

SH
.
SHIWE∗

H

S∗
HI∗WEH

.
EHI∗H
E∗

HIH
.
S∗
W

SW
.
SW IHE∗

W

S∗
W I∗HEW

.
EHI∗W
E∗

W IW
)
1
6}.

(6.20)

= 0 ∀ SH > 0, EH > 0, IH > 0, SW > 0, EW > 0, IW > 0.
The equality hold if and only if SH = S∗

H , SW = S∗
W ,

EH

E∗
H
= IH

I∗H
= IW

I∗W
.

W3 = βES
∗
W η∗E(9−

S∗
H

SH
− SHIWE∗

H
S∗
HI∗WEH

− EHI∗H
E∗

HIH
− IHR∗

H
I∗HRH

− RH
R∗

H
− S∗

W
SW

− SW ηEE∗
W

S∗
W η∗EEW

− EW I∗W
E∗

W IW
− η∗E

ηE
)

≤ βES
∗
W η∗E{9− (

S∗
H

SH
.
SHIWE∗

H
S∗
HI∗WEH

.
EHI∗H
E∗

HIH
.
IHR∗

H
I∗HRH

.RH
R∗

H
.
IHR∗

H
I∗HRH

.
S∗
W

SW
.
SW ηEE∗

W
S∗
W η∗EEW

.
EW I∗W
E∗

W IW
.
η∗E
ηE

)
1
9 }.
(6.21)

=0 ∀ SH > 0, EH > 0, IH > 0, RH > 0, SW > 0, EW > 0, IW > 0, ηE > 0
The equality hold if and only if SH = S∗

H , RH = R∗
H , ηE = η∗E,

EH

E∗
H
= IH

I∗H
= IW

I∗W
= EW

E∗
W
.

By the mean inequality, we obtain

W1 =
(βW S∗

W I∗H+βES∗
W η∗

E)

βHS∗
H

I∗
W

(2− IHE∗
H

I∗
H

EH
− EHI∗H

E∗
H

IH
) ≤ 0.

W2 = βWS∗
W I∗H(6− S∗

H
SH

− SHIWE∗
H

S∗
H

I∗
W

EH
− EHI∗H

E∗
H

IH
− S∗

W
SW

− SW IHE∗
W

S∗
W

I∗
H

EW
− EHI∗W

E∗
W

IW
) ≤ 0.

W3 = βES∗
W η∗E(9− S∗

H
SH

− SHIWE∗
H

S∗
H

I∗
W

EH
− EHI∗H

E∗
H

IH
− IHR∗

H
I∗
H

RH
− RH

R∗
H

− S∗
W

SW
− SW ηEE∗

W
S∗
W

η∗
E
EW

− EW I∗W
E∗

W
IW

− η∗
E

ηE
) ≤ 0.


(6.22)

Now, we assume the condition

V1 = (1 +
RHS∗

H

R∗
HSH

− RH

R∗
H
− S∗

H

SH
) ≥ 0 (6.23)

Thus the conditions (6.22) and (6.23) ensures that L̇ ≤ 0 for all (SH , EH , IH , RH , SW ,
EW , IW , ηE) ∈ Γ0, and the strict equality L̇ = 0 holds only for SH = S∗

H , EH =
E∗

H , IH = I∗H , RH = R∗
H , SW = S∗

W , EW = E∗
W , IW = I∗W , ηE = η∗E. Then, the

equilibrium state E2 is the only positive invariant set of system (2.1) contained
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entirely in Γ+
ϵ = {(SH , EH , IH , RH , SW , EW , IW , ηE), SH = S∗

H , EH = E∗
H , IH =

I∗H , RH = R∗
H , SW = S∗

W , EW = E∗
W , IW = I∗W , ηE = η∗E.} and hence by the asymp-

totic stability theorem [20], the positive endemic equilibrium state E2 is globally
asymptotically stable on Γε. This completes the proof.
Note: It’s important to emphasize that the additional condition involving

−θHR∗
H

(βWS∗
W I∗H+βES∗

W η∗E)

βHS∗
HI∗W

(1 − S∗
H

SH
− RH

R∗
H
+

RHS∗
H

R∗
HSH

) is not required when the disease

provides permanent immunity against re-infection. In such cases, θH equals zero,
causing the first term of (6.16) to vanish.

7. Numerical analysis and simulation

Numerical experiments

Some parameter values were sourced from existing studies [1, 19, 24], while others
(e.g., αW , σH , δW , νE) were assumed due to the lack of empirical data. Future
calibration with field data is needed. Finally, for the numerical experiments, we
used the set of parameter values of the model (2.1) given in table 3.

Table 3: Values of parameter used for simulations

Parameters Description of parameters Reference

NH 1000 [24]
NW 7000 Hypothetical
µH 0.0004566 [1]
µW 0.15 [1]
βH 0.0014 [19]
βW 0.0015 [1]
βE 0.002 [19]
γH 0.05 [1]
θH 0.4 [1]
αH 0.7 [1]
αW 0.5 Hypothetical
σH 0.0003 Hypothetical
δW 0.65 Hypothetical
a 100 [1, 19]
νE 0.05 Hypothetical

With a specific set of parameter values, including NH = 1000, NW = 10, 000,
µH = 0.004566, µW = 0.3333333, βH = 0.0000014, βW = 0.00000015, βE =
0.000000000001, σH = 0.05, θH = 0.04, a = 100, αH = 0.0018, αW = 1.5, γH = 0.4,
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and ηE = 0.9123, we calculate the basic reproduction number asR0 = 0.0101, which
is less than 1, indicating that the disease is unlikely to result in an outbreak.

The equilibrium points for this system are as follows: E0, representing the
disease-free equilibrium, is (10000, 0, 0, 0, 70, 000, 0, 0, 0); and E∗, representing a
non-trivial equilibrium where the disease is present, is (9, 200, 95, 289, 38, 376, 51,
265, 10, 218, 8, 515, 250) The stability analysis reveals that the characteristic roots
of the Jacobian matrix corresponding to the system (2.1) at the disease-free equi-
librium point E0 = (219010, 0, 0, 30, 000, 0, 0, 0, 0) are as follows: λ1 = −0.0046,
λ2 = −0.0446, λ3 = −0.3333, λ4 = −1.8333, λ5 = −0.0063, λ6 = −0.1147,
λ7 = −0.3333, and λ8 = −0.9123. Based on these eigenvalues, we can conclude that
the disease-free equilibrium point is stable. The characteristic roots of the same
Jacobian matrix corresponding to the system (2.1) at the endemic equilibrium point
E∗ = (1793600941049739, 56382849, 885857, 1192645, 376, 21449, 1554, 6995, 10) are
as follows: λ1 = 11.5663, λ2 = −0.00456, λ3 = −0.04456, λ4 = −0.33333,
λ5 = −0.60671− 12131i, λ6 = −0.60671+ 1213i, λ7 = −0.9123, and λ8 = −12783.
Consequently, the endemic equilibrium point is determined to be unstable.

We explore an alternative parameter set for our model, featuring the following
values: NH = 1, 000, NW = 10, 000, µH = 0.0004566, µW = 0.006666, βH =
0.000014, βW = 0.000015, βE = 0.004444, σH = 0.05, θH = 0.004, a = 100,
αH = 0.018, αW = 0.02, δW = 0.04, γH = 0.02, and ηE = 0.0003123. Given
these specific parameter values, the computed basic reproduction number emerges
as R0 = 3.9178x102, comfortably surpassing the pivotal threshold 1.

The equilibrium points associated with this parameter set include E0 = (2.1901
X106, 0, 0, 0, 1.5002X106, 0, 0, 0) and E∗ = (30743974729, 145, 37, 166, 7, 375007, 160
719, 320204).

At the state of disease-free equilibrium, they denoted as E0 = (2.1901X106, 0, 0,
0, 1.5002X106, 0, 0, 0), the eigenvalues of the Jacobian matrix, governing the system
(2.1), are elegantly characterized as λ1 = −0.0005, λ2 = −0.6205, λ3 = −0.4005,
λ4 = −0.0002, λ5 = −0.8025, λ6 = −0.5002, λ7 = −0.0020, λ8 = 0.0012, λ9 =
−0.9900. Consequently, the disease-free equilibrium point is deemed unstable.

At the distinctive endemic equilibrium point E∗ = (22, 168, 605, 123, 79, 855, 27,
69, 116, 250), the eigenvalues of the Jacobian matrix exhibit the following pattern:
λ1 = −0.00031, λ2 = −0.00317, λ3 = −0.02014, λ4 = −0.02712, λ5 = −0.45910,
λ6 = −0.07045, λ7 = −2.2505, λ8 = −14230. Hence, the stability of the endemic
equilibrium point has been verified.

Further insights on the transcritical bifurcation can be found in section 4.
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Figure 3: The trajectories of state variables when R0 = 0.0914 < 1
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Figure 4: The trajectories of state variables when R0 = 3.9178 ∗ 102 > 1

8. Conclusion
In this study, we introduced and systematically analyzed an adapted SEIR-

SEI model in an arsenic-contaminated environment. We specifically addressed
individuals affected by the environmental pathogen Mycobacterium ulcerans. Our
primary objective was to explore the transmission dynamics of Buruli ulcer disease.

To enhance the model’s realism, we incorporated latent individuals, disease-
induced mortality, and dynamic population changes in both host and vector pop-
ulations. Within the epidemiological framework, we identified two key equilibrium
states: a disease-free equilibrium representing the absence of infection and an en-
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demic equilibrium signifying its sustained presence. Our analysis revealed the oc-
currence of forward bifurcation, where a locally asymptotically stable disease-free
state can coexist with a stable endemic state when R0 < 1. Using Lyapunov func-
tions, we further established the global asymptotic stability of both equilibrium
states, reinforcing the critical role of the basic reproduction number, R0, in deter-
mining disease persistence. Specifically, when R0 < 1, the disease-free equilibrium
remains globally stable, whereas, for R0 > 1, a unique endemic equilibrium prevails
with global asymptotic stability.

This refined model, which integrates latent compartments and disease-induced
mortality in human and vector populations, offers deeper biological insights into
Buruli ulcer transmission. It is a valuable tool for understanding and mitigating
the spread of this debilitating disease by capturing key epidemiological dynamics.

Future work will focus on validating the model using epidemiological datasets
from Buruli ulcer endemic regions, enhancing predictive robustness.
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