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Abstract: In 2018, Masjed-Jamei and Koepf established interesting and valuable
generalizations of various classical summation formulas for the generalized hyper-
geometric series 2F1, 3F2, 4F3, 5F4 and 6F5. Building on this work, in this study, we
establish seven generalized hypergeometric integrals of the MacRobert-style using
these summation theorems. In addition to that, we present several special cases to
illustrate the applicability of our results in the literature, including the most recent
contributions by Kulkarni et al.
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1. Introduction
For any complex number u ∈ C, the Pochhammer symbol or ascending factorial,

introduced by Leo August Pochhammer [1, 25], is defined by
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(u)n =


1, (n = 0, u ̸= 0)
n−1∏
r=0

(u+ r), (n ∈ N)

=
Γ(u+ n)

Γ(u)

(1.1)

where Γ(u) belongs to the category of special transcendental functions, It extends
the concept of factorial to complex numbers and is widely recognized as the Gamma
function. We characterize the expression through the integral given by

Γ(u) =

∫ ∞

0

tu−1e−t dt for Re(u) > 0.

Using the ascending factorial (1.1), the generalized hypergeometric function is ex-
pressed as [2, 4, 23, 25],

pFq

[
ρ1, · · · , ρp
β1, · · · , βq

| z
]
=

∞∑
n=0

∏p
i=1 (ρi)n∏q
j=1 (βj)n

zn

n!
(1.2)

where βj ̸= 0,−1,−2, . . ..
The parameters ρ1, . . . , ρp ∈ C represent the p parameters in the numerator,

while β1, . . . , βq ∈ C represent the q parameters in the denominator. For details
regarding the convergence conditions of pFq, readers can refer to the standard
textbooks [2, 3, 4].

When p = 2 and q = 1, the above series (1.2) takes the form

2F1

[
ρ1, ρ2
β1

| z
]
=

∞∑
n=0

(ρ1)n(ρ2)n
(β)n

zn

n!

which converges for |z| ≤ 1, and commonly known as Gauss’s hypergeometric
function.
When p = 1, q = 1, the series (1.2) takes the form:

1F1

[
ρ1
β1

| z
]
=

∞∑
n=0

(ρ1)n
(β1)n

zn

n!

Which converges everywhere and is commonly referred to in the literature as the
confluent hypergeometric function or Kummer’s function.
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Many mathematicians extensively studied the hypergeometric functions 2F1 and

3F2 due to their wide variety of uses in various fields such as mathematical physics,
number theory, and combinatorics [18, 20, 25].

By specifying particular values for the parameters and the arguments in 2F1

and 3F2, summation theorems yield explicit expressions for these hypergeometric
functions, often in terms of Gamma functions. The hypergeometric functions 2F1

and 3F2 are linked to several classical summation theorems, including Gauss’s the-
orem for 2F1 at z = 1, Gauss’s second and Bailey’s theorems for 2F1 at z = 1

2
,

and Kummer’s theorem for 2F1 at z = −1. Additionally, Watson’s, Dixon’s, Whip-
ple’s, and Pfaff-Saalschütz’s theorems apply to Clausen’s series 3F2(1) with specific
parameters, while Second Whipple’s theorem addresses 4F3 at z = −1. For more
details on these summation theorems, including detailed formulations and proofs,
refer to Koepf et al. [11, p.108] and Andrews et al. [2]. It is important to point out
here that, whenever hypergeometric functions, whether they are the basic 2F1 or
the more generalized pFq, reduce to well-known functions like gamma functions, it
simplifies mathematical expressions, making them more manageable for additional
analysis and computation.

Remark 1. For interesting generalizations and extensions of the long-established
summation theorems described above, we refer to relevant papers by [13, 14, 15], [8],
and [24].

Another form of hypergeometric series, known as finite sums of hypergeometric
series, is defined by the following symbol (see [17]):

p

(k)

F q

[
ρ1, · · · , ρp
β1, · · · , βq

| z
]
=

k∑
n=0

∏p
i=1 (ρi)n∏q
j=1 (βj)n

zn

n!
, (1.3)

It is evident that the generalized hypergeometric series (1.2) encompasses all integer
values of n from 0 to infinity, characterized by its hypergeometric nature. In
contrast, when the upper limit of the summation is a finite natural number k,
the series becomes a finite sum of the first k + 1 terms on the right-hand side
of (1.2). As an illustration, we consider particular cases when k = −1, 0, and 1,
which yield different results and provide insights into specific instances of finite
hypergeometric series. For k = −1, the hypergeometric series is an empty sum,

resulting in p

(−1)

F q(z) = 0, and for k = 0, it consists of only one term, equaling

p

(0)

F q(z) = 1. For k = 1, the series includes two terms, giving p

(1)

F q(z) = 1 + ρ1···ρp
β1···βq

z.

By using the following relation mentioned in [22],
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pFq

[
ρ1, · · · , ρp−1, 1
β1, · · · , βq−1, k

| z
]

=

∏q−1
j=1 Γ (βj)∏p−1
i=1 Γ (ρi)

·
∏p−1

i=1 Γ (ρi − k + 1)∏q−1
j=1 Γ (βj − k + 1)

(k − 1)!

zk−1

×
{

p−1Fq−1

[
ρ1 − k + 1, · · · , ρp−1 − k + 1
β1 − k + 1, · · · , βq−1 − k + 1

| z
]

−
(k−2)

p−1Fq−1

[
ρ1 − k + 1, · · · , ρp−1 − k + 1
β1 − k + 1, · · · , βq−1 − k + 1

| z
]}

,

(1.4)

Significant extensions of the well-known summation formulae, ranging from Gauss
to Whipple, have been provided recently by Masjed-Jamei and Koepf [17]. For
details on the original expressions of these classical summation formulae, readers
are directed to the comprehensive references [11, 2, 4], where the foundational
results are discussed in detail. The extended results, presented in terms of Gamma
functions and finite sums of hypergeometric series, are provided in equations (1.5)-
(1.11) below:

(i) The extended version of the Gauss summation theorem, as provided by Masjed-
Jamei and Koepf [17], is given by:

3F2

[
ρ, β, 1
γ, k

| 1
]
=

Γ (k) Γ (γ) Γ (1 + ρ− k) Γ (1 + β − k)

Γ (β) Γ (ρ) Γ (1 + γ − k)

×
{
Γ (γ − k + 1)Γ (γ − ρ− β + k − 1)

Γ (γ − β) Γ (γ − ρ)

−
(k−2)

2F1

[
ρ− k + 1, β − k + 1

γ − k + 1
| 1

]}
= Θ1 (let)

(1.5)

(ii) The extended version of Kummer’s summation formula, as discussed in Masjed-
Jamei and Koepf [17], is given by:

3F2

[
ρ, β, 1

ρ+ k − β, k
| −1

]
= (−1)k−1Γ (k) Γ (ρ+ k − β) Γ (ρ− k + 1)Γ (β − k + 1)

Γ (β) Γ (ρ) Γ (ρ+ 1− β)

×

{
Γ (ρ+ 1− β) Γ

(
ρ−k+1

2
+ 1

)
Γ (ρ− k + 2)Γ

(
ρ−k+1

2
+ k − β

)
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−
(k−2)

2F1

[
ρ− k + 1, β − k + 1

ρ− β + 1
| −1

]}
= Θ2 (let)

(1.6)

(iii) The extended version of the second kind of Gauss formula, as expressed in
Masjed-Jamei and Koepf [17], is given by:

3F2

[
ρ, β, 1
ρ+β+1

2
, k

| 1
2

]
= 2k−1Γ (k) Γ

(
ρ+β+1

2

)
Γ (β − k + 1)Γ (ρ− k + 1)

Γ (ρ) Γ (β) Γ
(
−k + ρ+β+1

2
+ 1

)
×

{√
πΓ

(
−k + ρ+β+1

2
+ 1

)
Γ
(
ρ−k
2

+ 1
)
Γ
(
β−k
2

+ 1
)

−
(k−2)

2F1

[
ρ− k + 1, β − k + 1

−k + ρ+β+1
2

+ 1
| 1
2

]}
= Θ3 (let)

(1.7)

(iv) The extension of the Bailey formula, as expressed in Masjed-Jamei and Koepf
[17], is given by :

3F2

[
ρ, 2k − ρ− 1, 1

β, k
| 1
2

]
= 2k−1Γ (β) Γ (k) Γ (ρ− k + 1)Γ (k − ρ)

Γ (ρ) Γ (2k − ρ− 1) Γ (β − k + 1)

×

{
Γ
(
β−k+1

2

)
Γ
(
β−k+2

2

)
Γ
(
ρ+β
2

− k + 1
)
Γ
(
β−ρ+1

2

)
−

(k−2)

2F1

[
ρ− k + 1, k − ρ

β − k + 1
| 1
2

]}
= Θ4 (let)

(1.8)

(v) The extension of Dixon’s theorem, as provided by Masjed-Jamei and Koepf
[17], is given by:

4F3

[
ρ, β, γ, 1

ρ− β + k, ρ− γ + k, k
| 1

]
=

Γ (k) Γ (ρ− β + k) Γ (ρ− γ + k) Γ (ρ+ 1− k) Γ (β + 1− k) Γ (γ + 1− k)

Γ (γ) Γ (β) Γ (ρ) Γ (ρ− β + 1)Γ (ρ− γ + 1)

×

{
Γ
(
ρ+3−k

2

)
Γ (ρ− β + 1)Γ (ρ− γ + 1)Γ

(
ρ+3k−1

2
− β − γ

)
Γ (ρ+ 2− k) Γ

(
ρ+k+1

2
− β

)
Γ
(
ρ+k+1

2
− γ

)
Γ (ρ− β − γ + k)
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−
(k−2)

3F2

[
ρ− k + 1, β − k + 1, γ − k + 1

1 + ρ− β, 1 + ρ− γ
| 1

]}
= Θ5 (let)

(1.9)

(vi) The extension of Watson’s theorem, as represented by Masjed-Jamei and
Koepf [17], is given by:

4F3

[
ρ, β, γ, 1

ρ+β+1
2

, 2γ + 1− k, k
| 1

]
=

Γ (k) Γ
(
ρ+β+1

2

)
Γ (2γ − k + 1)Γ (ρ− k + 1)Γ (β − k + 1)Γ (γ − k + 1)

Γ (ρ) Γ (β) Γ (γ) Γ
(
ρ+β+3

2
− k

)
Γ (2γ − 2k + 2)

×

{ √
π Γ

(
γ − k + 3

2

)
Γ
(
ρ+β+3

2
− k

)
Γ
(
γ − ρ+β−1

2

)
Γ
(
ρ−k
2

+ 1
)
Γ
(
β−k
2

+ 1
)
Γ
(
γ − ρ+k

2
+ 1

)
Γ
(
γ − β+k

2
+ 1

)
−

(k−2)

3F2

[
ρ− k + 1, β − k + 1, γ − k + 1

−k + ρ+β+1
2

+ 1, 2γ − 2k + 2
| 1

]}
= Θ6 (let)

(1.10)

(vii) The extension of Whipple’s theorem, as represented by Masjed-Jamei and
Koepf [17], is given by:

4F3

[
ρ, 2k − 1− ρ, β, 1
γ, 2β − γ + 1, k

| 1
]

=
Γ (k) Γ (γ) Γ (2β − γ + 1)Γ (k − ρ) Γ (β − k + 1)Γ (ρ− k + 1)

Γ (β) Γ (ρ) Γ (2k − ρ− 1) Γ (γ − k + 1)Γ (2β − γ − k + 2)

×

{
π 22k−2β−1 Γ (γ − k + 1)

Γ
(
β + 1+ρ−γ

2
− k + 1

)
Γ
(
ρ+γ
2

− k + 1
)
Γ
(
1−ρ+γ

2

)
×Γ (2β − γ − k + 2)

Γ
(
β − ρ+γ

2
+ 1

) −
(k−2)

3F2

[
ρ− k + 1, β − k + 1, k − ρ
γ − k + 1, 2β − γ − k + 2

| 1
]}

= Θ7 (let)

(1.11)

In 1961, MacRobert [16] evaluated the following integral and obtained the answer
in terms of Gamma functions.∫ 1

0

ta−1(1− t)b−1[rt+ s(1− t)]−a−bdt =
1

rasb
Γ(a)Γ(b)

Γ(a+ b)
(1.12)
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provided Re(a) > 0, Re(b) > 0 and r and s are non-zero constants and the
expression rt+ s(1− t) is non-zero for all t ∈ [0, 1].
In recent years, several authors have investigated MacRobert-style integral formu-
las involving various generalizations of classical special functions. For instance, in
2019, Khan et al. [7] studied such integrals involving Bessel-Struve kernel function,
which are expressed in terms of Wright generalized hypergeometric functions and
then transformed into generalized hypergeometric functions. In 2018, Kim and co-
authors [9] established several MacRobert-style generalized integrals involving the
hypergeometric function 3F2. Later, in 2020, Kim [10] independently derived some
integrals involving the function 4F3. These results were derived using an extension
of Watson’s summation theorem developed by Lavoie et al. [13]. Furthermore, in
2021, Jatav and Shukla [6] discussed MacRobert-style integrals associated with a
general class of polynomials defined by Prabhakar and Suman [21], expressed in
terms of the pRq(τ, µ; z) function introduced by Desai and Shukla [5]. In 2024,
Mishra et al. [19] derived some MacRobert-style integral formulas combining the
k-Struve and Mittag-Leffler functions. These works demonstrate the broad appli-
cability of the MacRobert-style integral approach across various special functions
and within different mathematical contexts.

The novelty of our work lies in the derivation of a new class of seven MacRobert-
style integrals incorporating generalized hypergeometric functions, utilizing the
suitable extended versions of summation formulas for 2F1, 3F2, 4F3, 5F4 and 6F5

given by (1.5) through (1.11) which are provided by Masjed-Jamei and Koepf [17].
These results generalize and unify by encompassing several known integrals as
special cases. Moreover, the specific approach used allows for the inclusion of
additional parameters and function classes, thus extending the applicability of the
MacRobert integral framework to wider analytical contexts.

2. MacRobert - style integrals
The following theorems introduce seven new MacRobert-style integrals devel-

oped in this study by incorporating generalized hypergeometric functions.

Theorem 2.1. Let k ∈ N, Re(ν) > 0, Re(e − ν) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, β, e, 1
γ, ν, k

| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)
Θ1

(2.1)

where Θ1 is the same value as in (1.5).
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Proof. Let I represent the left-hand side of (2.1). We will express 4F3 in series
form, switch the sequence of integration and summation, and then evaluate the
MacRobert integral utilizing the result (1.12), we have

I =
∞∑
n=0

(ρ)n(β)n(e)n(1)nr
n

(γ)n(ν)n(k)nn!

1

rν+nse−ν

Γ(ν + n)Γ(e− ν)

Γ(e+ n)

Upon applying the ascending factorial (1.1) and simplifying, the result is obtained
as

I =
∞∑
n=0

(ρ)n(β)n(e)n(1)nr
n

(γ)n(ν)n(k)nn!

1

rνrnse−ν

Γ(ν)(ν)nΓ(e− ν)

Γ(e)(e)n

After summing the series, we arrive at

I =
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)
3F2

[
ρ, β, 1
γ, k

| 1
]

Now, it is evident that the 3F2 can be computed using the result (1.5), facilitating
our arrival at the right side of (2.1).

Consequently, we have established the result in Theorem 2.1.

Corollary 2.1. If we substitute k = 2, and 3 (excluding the trivial case of k = 1)
into the preceding theorem, we respectively obtain the integrals presented below.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, β, e, 1
γ, ν, 2

| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

(γ − 1)

(β − 1)(ρ− 1)

[
Γ(γ − 1)Γ(γ − ρ− β + 1)

Γ(γ − β)Γ(γ − ρ)
− 1

] (2.2)

and ∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, β, e, 1
γ, ν, 3

| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

2(γ − 2)2
(ρ− 2)2(β − 2)2

×
[
Γ(γ − 2)Γ(γ − ρ− β + 2)

Γ(γ − ρ)Γ(γ − β)
− ρβ + γ − 2ρ− 2β + 2

γ − 2

] (2.3)

Similarly, the subsequent theorems and their associated corollaries can be derived
by applying the results (1.6) to (1.11). Therefore, they are provided here without
derivation.
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Theorem 2.2. Let k ∈ N, Re(e) > 0, Re(ν − 2e+ k) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

te−1(1− t)ν−2e+k−1

[rt+ s(1− t)]ν−e+k 4F3

[
ρ, β, ν − e+ k, 1
ρ− β + k, e, k

| −rt

rt+ s(1− t)

]
dt

=
1

resν−2e+k

Γ(e)Γ(ν − 2e+ k)

Γ(ν − e+ k)
Θ2

(2.4)

where Θ2 is the same value as in (1.6).

Corollary 2.2. If we substitute k = 1, 2, and 3 into the preceding theorem, we
respectively obtain the integrals presented below.∫ 1

0

te−1(1− t)ν−2e

[rt+ s(1− t)]ν−e+1 4F3

[
ρ, β, ν − e+ 1, 1
ρ− β + 1, e, 1

| −rt

rt+ s(1− t)

]
dt

=
1

resν−2e+1

Γ(e)Γ(ν − 2e+ 1)

Γ(ν − e+ 1)

Γ(ρ− β + 1)Γ(1 + ρ
2
)

Γ(ρ+ 1)Γ(1 + ρ−β
2
)

(2.5)

∫ 1

0

te−1(1− t)ν−2e+1

[rt+ s(1− t)]ν−e+2 4F3

[
ρ, β, ν − e+ 2, 1
ρ− β + 2, e, 2

| −rt

rt+ s(1− t)

]
dt

=
1

resν−2e+2

Γ(e)Γ(ν − 2e+ 2)

Γ(ν − e+ 2)

(ρ− β + 1)

(β − 1)(ρ− 1)

×

[
1−

Γ(ρ− β + 1)Γ(ρ+1
2
)

Γ(ρ)Γ(ρ
2
+ 3

2
− β)

] (2.6)

∫ 1

0

te−1(1− t)ν−2e+2

[rt+ s(1− t)]ν−e+3 4F3

[
ρ, β, ν − e+ 3, 1
ρ− β + 3, e, 3

| −rt

rt+ s(1− t)

]
dt

=
1

resν−2e+3

Γ(e)Γ(ν − 2e+ 3)

Γ(ν − e+ 3)

2(ρ− β + 1)2
(β − 2)2(ρ− 2)2

×
[

Γ(ρ− β + 1)Γ(ρ
2
)

Γ(ρ
2
− β + 2)Γ(ρ− 1)

− 3ρ+ β − ρβ − 3

ρ− β + 1

] (2.7)

Theorem 2.3. Let k ∈ N, Re(e) > 0, Re(ν − e+ 1) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

te−1(1− t)
ν−e−1

2

[rt+ s(1− t)]
(ν+e+1)

2

4F3

[
ρ, β, ν+e+1

2
, 1

e, ρ+β+1
2

, k
| rt

2(rt+ s(1− t))

]
dt

=
1

res
ν−e+1

2

Γ(e)Γ(ν−e+1
2

)

Γ(ν+e+1
2

)
Θ3

(2.8)
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where Θ3 is the same value as in (1.7).

Corollary 2.3. If we substitute k = 1, 2, and 3 into the preceding theorem, we
respectively obtain the integrals presented below.

∫ 1

0

te−1(1− t)
ν−e−1

2

[rt+ s(1− t)]
1
2
(ν+e+1)

4F3

[
ρ, β, ν+e+1

2
, 1

e, ρ+β+1
2

, 1
| rt

2(rt+ s(1− t))

]
dt

=

√
πΓ(e)

res
ν−e+1

2

Γ(ν−e+1
2

)

Γ(ν+e+1
2

)

Γ(ρ+1+β
2

)

Γ(β+1
2
)Γ(ρ+1

2
)

(2.9)

∫ 1

0

te−1(1− t)
ν−e−1

2

[rt+ s(1− t)]
1
2
(ν+e+1)

4F3

[
ρ, β, ν+e+1

2
, 1

e, ρ+β+1
2

, 2
| rt

2(rt+ s(1− t))

]
dt

=
1

res
ν−e+1

2

Γ(e)Γ(ν−e+1
2

)

Γ(ν+e+1
2

)

(ρ− 1 + β)

(β − 1)(ρ− 1)

×

[√
π Γ(ρ−1+β)

2

Γ(β
2
Γ(ρ

2
)

− 1

] (2.10)

∫ 1

0

te−1(1− t)
ν−e−1

2

[rt+ s(1− t)]
1
2
(ν+e+1)

4F3

[
ρ, β, ν+e+1

2
, 1

e, ρ+β+1
2

, 3
| rt

2(rt+ s(1− t))

]
dt

=
1

res
ν−e+1

2

Γ(e)Γ(ν−e+1
2

)

Γ(ν+e+1
2

)

2(ρ− 1 + β)(ρ− 3 + β)

(β − 2)2 (ρ− 2)2

×

[√
π Γ(β+ρ

2
− 3

2
)

Γ(β−1
2
)Γ(ρ−1

2
)

− (ρβ − β − ρ+ 1)

(ρ− 3 + β)

] (2.11)

Theorem 2.4. Let k ∈ N, Re(ν) > 0, Re(e − ν) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, 2k − ρ− 1, e, 1

β, ν, k
| rt

2(rt+ s(1− t))

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)
Θ4

(2.12)

where Θ4 is the same value as in (1.8).

Corollary 2.4. If we substitute k = 1, 2, and 3 into the preceding theorem, we
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respectively obtain the integrals presented below.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, 1− ρ, e, 1

β, ν, 1
| rt

2(rt+ s(1− t))

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

Γ(β
2
)Γ(β+1

2
)

Γ(ρ+β
2
)Γ(β−ρ+1

2
)

(2.13)

∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, 3− ρ, e, 1

β, ν, 2
| rt

2(rt+ s(1− t))

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

2(1− β)

(ρ− 2)2

×

[
Γ(β−1

2
) Γ(β

2
)

Γ(1−ρ+β
2

)Γ(ρ+β
2

− 1)
− 1

] (2.14)

∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
4F3

[
ρ, 5− ρ, e, 1

β, ν, 3
| rt

2(rt+ s(1− t))

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

8(β − 2)2
(ρ− 4)4

×

[
Γ(β−1

2
)Γ(β−2

2
)

Γ(β−ρ+1
2

) Γ(ρ+β
2

− 2)
− 5ρ− ρ2 + 2β − 10

2(β − 2)

] (2.15)

Theorem 2.5. Let k ∈ N, Re(ν) > 0, Re(e− 2ν + k) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

tν−1(1− t)e−2ν+k−1

[rt+ s(1− t)]e−ν+k 5F4

[
ρ, β, γ, e− ν + k, 1

ρ− β + k, ρ− γ + k, ν, k
| rt

rt+ s(1− t)

]
dt

=
1

rνse−2ν+k

Γ(ν)Γ(e− 2ν + k)

Γ(e− ν + k)
Θ5

(2.16)

where Θ5 is the same value as in (1.9).

Corollary 2.5. If we substitute k = 1, 2, and 3 into the preceding theorem, we
respectively obtain the integrals presented below.∫ 1

0

tν−1(1− t)e−2ν

[rt+ s(1− t)]e−ν+1 5F4

[
ρ, β, γ, e− ν + 1, 1

ρ− β + 1, ρ− γ + 1, ν, 1
| rt

rt+ s(1− t)

]
dt

=
1

rνse−2ν+1

Γ(ν)Γ(e− 2ν + 1)

Γ(e− ν + 1)

×
Γ(ρ− γ + 1)Γ(ρ

2
+ 1)Γ(ρ− β + 1)Γ(ρ

2
− β − γ + 1)

Γ(ρ+ 1)Γ(1 + ρ
2
− β)Γ(1 + ρ

2
− γ)Γ(ρ− β − γ + 1)

(2.17)
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0

tν−1(1− t)e−2ν+1

[rt+ s(1− t)]e−ν+2 5
F4

[
ρ, β, γ, e− ν + 2, 1

ρ− β + 2, ρ− γ + 2, ν, 2
| rt

rt+ s(1− t)

]
dt

=
1

rνse−2ν+2

Γ(ν)Γ(e− 2ν + 2)

Γ(e− ν + 2)

(ρ− β + 1)(ρ− γ + 1)

(γ − 1)(β − 1)(ρ− 1)[
Γ(ρ+1

2
)Γ(ρ− γ + 1)Γ(ρ− β + 1)Γ(ρ+5

2
− β − γ)

Γ(ρ)Γ(ρ+3
2

− β)Γ(ρ+3
2

− γ)Γ(ρ− β − γ + 2)
− 1

] (2.18)

∫ 1

0

tν−1(1− t)e−2ν+2

[rt+ s(1− t)]e−ν+3 5F4

[
ρ, β, γ, e− ν + 3, 1

ρ− β + 3, ρ− γ + 3, ν, 3
| rt

rt+ s(1− t)

]
dt

=
1

rνse−2ν+3

Γ(ν)Γ(e− 2ν + 3)

Γ(e− ν + 3)

2(ρ− β + 1)2(ρ− γ + 1)2
(γ − 2)2(β − 2)2(ρ− 2)2

×

[
Γ(ρ

2
)Γ(ρ− γ + 1)Γ(ρ− β + 1)Γ(ρ+8

2
− β − γ)

Γ(ρ− 1)Γ(ρ
2
− γ + 2)Γ(ρ

2
− β + 2)Γ(ρ− β − γ + 3)

− (γ − 2)(β − 2)(ρ− 2)

(ρ− γ + 1)(ρ− β + 1)
− 1

]
(2.19)

Theorem 2.6. Let k ∈ N, Re(ν) > 0, Re(ν−k+1) > 0, Re(ν−ρ−β+k) > 1, and
r and s be non-zero constants. If rt + s(1 − t) ̸= 0 for all t ∈ [0, 1], the following
result holds.

∫ 1

0

tν−1(1− t)ν−k

[rt+ s(1− t)]2ν−k+1 5F4

[
ρ, β, γ, 2ν − k + 1, 1
ρ+β+1

2
, 2γ − k + 1, ν, k

| rt

rt+ s(1− t)

]
dt

=
1

rνsν−k+1

Γ(ν)Γ(ν − k + 1)

Γ(2ν − k + 1)
Θ6

(2.20)

where Θ6 is the same value as in (1.10).

Corollary 2.6. If we substitute k = 1, 2, and 3 into the preceding theorem, we
respectively obtain the integrals presented below.

∫ 1

0

tν−1(1− t)ν−1

[rt+ s(1− t)]2ν
5F4

[
ρ, β, γ, 2ν, 1
ρ+β+1

2
, 2γ, ν, 1

| rt

rt+ s(1− t)

]
dt

=
1

rνsν
Γ(ν)Γ(ν)

Γ(2ν)

Γ(ρ+β+1
2

)
√

(π)Γ(γ + 1
2
)Γ(γ − ρ+β−1

2
)

Γ(ρ+1
2
)Γ(β+1

2
)Γ(γ + 1−ρ

2
Γ(γ + 1−β

2
)

(2.21)
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0

tν−1(1− t)ν−2

[rt+ s(1− t)]2ν−1 5F4

[
ρ, β, γ, 2ν − 1, 1
ρ+β+1

2
, 2γ − 1, ν, 2

| rt

rt+ s(1− t)

]
dt

=
1

rνsν−1

Γ(ν)Γ(ν − 1)

Γ(2ν − 1)

(ρ− 1 + β)

(β − 1)(ρ− 1)

×

[√
πΓ(γ − 1

2
)Γ(ρ−1+β

2
)Γ(γ − ρ−1+β

2
)

Γ(β
2
)Γ(γ − β

2
)Γ(ρ

2
)Γ(γ − ρ

2
)

− 1

] (2.22)

∫ 1

0

tν−1(1− t)ν−3

[rt+ s(1− t)]2ν−2 5F4

[
ρ, β, γ, 2ν − 2, 1
1+ρ+β

2
, 2γ − 2, ν, 3

| rt

rt+ s(1− t)

]
dt

=
1

rνsν−2

Γ(ν)Γ(ν − 2)

Γ(2ν − 2)

(ρ− 1 + β)(ρ− 3 + β)(2γ − 3)

(γ − 1)(β − 2)2 (ρ− 2)2

×

[ √
πΓ(γ − 3

2
)Γ(ρ−3+β

2
)Γ(γ − ρ−1+β

2
)

Γ(γ − β+1
2
)Γ(γ − ρ+1

2
)Γ(β−1

2
)Γ(ρ−1

2
)
− (β − 2)(ρ− 2)

(ρ− 3 + β)
− 1

] (2.23)

Theorem 2.7. Let k ∈ N, Re(ν) > 0, Re(e − ν) > 0, and r and s be non-zero
constants. If rt+ s(1− t) ̸= 0 for all t ∈ [0, 1], the following result holds.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
5F4

[
ρ, β, 2k − ρ− 1, e, 1
2β − γ + 1, γ, ν, k

| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)
Θ7

(2.24)

where Θ7 is the same value as in (1.11).

Corollary 2.7. If we substitute k = 1, 2, and 3 into the preceding theorem, we
respectively obtain the integrals presented below.∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
5F4

[
ρ, β, 1− ρ, e, 1

2β − γ + 1, γ, ν, 1
| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

Γ(γ)Γ(2β − γ + 1)π 21−2β

Γ(ρ+γ
2
)Γ(ρ−γ+1

2
+ β)Γ(β − ρ+γ

2
+ 1)Γ(1−ρ+γ

2
)

(2.25)

∫ 1

0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
5F4

[
ρ, β, 3− ρ, e, 1

2β − γ + 1, γ, ν, 2
| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

(γ − 1)(γ − 2β)

(ρ− 2)2(β − 1)[
π 23−2β Γ(2β − γ) Γ(γ − 1)

Γ(ρ+γ
2

− 1)Γ(ρ−γ+1
2

− 1 + β)Γ(1−ρ+γ
2

)Γ(β − ρ+γ
2

+ 1)
− 1

] (2.26)
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0

tν−1(1− t)e−ν−1

[rt+ s(1− t)]e
5F4

[
ρ, β, 5− ρ, e, 1

2β − γ + 1, γ, ν, 3
| rt

rt+ s(1− t)

]
dt

=
1

rνse−ν

Γ(ν)Γ(e− ν)

Γ(e)

2(γ − 2)2Γ(2β − γ + 1)

Γ(2β − γ − 1)(ρ− 4)2(β − 2)2[
π 25−2βΓ(2β − γ − 1)Γ(γ − 2)

Γ(ρ+γ
2

− 2)Γ(β + ρ−γ−3
2

)Γ(1−ρ+γ
2

)Γ(β + 1− ρ+γ
2
)

−1− (β − 2)(ρ− 2)(3− ρ)

(γ − 2)(2β − γ − 1)

]
(2.27)

3. Special Cases

(i) If we take ν = β, e = γ, r = 1 + p and s = 1 + q, then the hypergeometric
function 4F3 used in (2.1) reduces to 2F1 and we obtain a result previously
established by Kulkarni et al. [12].

(ii) In the results (2.4) to (2.12), if we take ν = ρ, e = β, r = 1 + p and
s = 1+ q, then the hypergeometric function 4F3 reduces to 2F1 and we obtain
the corresponding results established by Kulkarni et al. [12].

Similarly, we can obtain other results.

4. Conclusion
In this paper, seven MacRobert-style integrals comprising generalized hypergeo-

metric functions are expressed in terms of the Gamma function using Masjed-Jamei
and Koepf’s summation theorems. Also, a few well-established and completely new
integrals have been included as particular instances associated with our key results.
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